

ЭЛЕКТРОПРИВОДЫ МНОГООБОРОТНЫЕ с блоком управления серии М1

Руководство по эксплуатации ЭП41.00.000 РЭ3

Содержание

1 Описание и работа	6
1.1 Назначение изделия	6
1.2 Технические характеристики	10
1.3 Устройство и работа	37
1.4 Маркировка	48
2 Использование по назначению	49
2.1 Эксплуатационные ограничения и меры безопасности	49
2.1.1 Общие требования безопасности	49
2.1.2 Обеспечение взрывозащищенности и общие требования к монтажу	49
2.2. Подготовка изделия к использованию	51
2.2.1 Распаковка и расконсервация	51
2.2.2 Монтаж привода на арматуру	
2.2.3 Электрическое подключение	
2.3 Эксплуатация привода	67
2.3.1 Работа с помощью ручного дублера	67
2.3.2 Способы выключения привода в конечных положениях	68
2.3.3 Запорно-регулирующий режим работы	70
2.4 Настройка механического блока управления	72
2.4.1 Общий порядок настроек	72
2.4.2 Настройка моментных выключателей	73
2.4.3 Настройка путевых выключателей	75
2.4.4 Настройка устройства блокировки (байпаса) сигнала превышения	
крутящего момента привода на участках срыва арматуры	77
2.4.5 Настройка потенциометрического датчика положения	
2.4.6 Настройка токового датчика положения	79
2.4.7 Настройка местного указателя	81
2.5 Пробный пуск	82
3 Техническое обслуживание	83
4 Хранение	86
5 Транспортирование	87
6 Утилизация	87
Приложение А Схемы подключения привода	88
Приложение Б Таблицы проверки сопротивления изоляции	94
Приложение В Соответствие кода исполнения блоков управления серии М1,	
реализуемым дополнительным функциям	96
Приложение Г Присоединительные размеры электропривода	99
Приложение Д Тип применяемых электродвигателей	110

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления потребителя с электроприводами многооборотными взрывозащищенными и общепромышленного исполнения с механическим блоком управления серии М1, выпускаемыми согласно ТУ 3791-001-70780838-2005 и ТУ 3791-002-70780838-2007 соответственно (далее — приводы), с целью обеспечения правильного монтажа и эксплуатации приводов, а также полного использования их технических возможностей.

Приводы при заказе и в документации другой продукции, в которой они могут быть применены, должны иметь следующую структуру условного обозначения:

$$\mathbf{\Im \Pi 4} X_{1} X_{2} - X_{3} - X_{4} - X_{5} - X_{6} - X_{7} - X_{8} X_{9} X_{10} X_{11} X_{12} - X_{13}$$

В представленной структуре:

- ЭП4 обозначение серии электроприводов;
- Xi означает символ, либо группу символов из набора, определяемого таблицей 1a, где i=1...13.

Таблица 1а – Структура условного обозначения привода

Xi	Уарактеристика	Значения Хі
ΛI	Характеристика	
X_1	Назначение по режимам работы	Р – для приводов запорно-регулирующей арматуры;отсутствие символа – для приводов запорной арматуры.
X ₂	Исполнение по взрывозащите	В – взрывозащищенное исполнение по ГОСТ IEC 60079-1-2013 для подгруппы IIB по ГОСТ 31610.0-2014; Н – общепромышленное исполнение; С - взрывозащищенное исполнение по ГОСТ IEC 60079-1-2013 для подгруппы IIC по ГОСТ 31610.0-2014 (только для конструктивных схем 40, 41, 410)
X ₃	Тип присоединения к арматуре	Буквенно-цифровое обозначение по ГОСТ Р 55510-2013 (буква из ряда М, А, Б, В, Г, Д или буквенно-цифровое обозначение из ряда F07 F40)
X ₄	Верхний предел настройки ограничителя крутящего момента, Н·м	Число из ряда, определенного таблицей За
X_5	Частота вращения выходного вала, об/мин	Число из ряда, определенного таблицей За
X_6	Исполнение блока управления	Код исполнения блока управления согласно таблицы 16, 1в, 1г
X ₇	Номер варианта температурного исполнения	Число из ряда, определенного таблицей 4.
X ₈	Тип присоединения выходного вала привода к валу арматуры ¹⁾	1 — кулачковое присоединение для фланцев из ряда МК, АК, Б, В, Г, Д по ГОСТ Р 55510-2013; 2 — присоединение под квадрат для фланцев АЧ по ГОСТ Р 55510-2013; 3 — присоединение для фланцев из ряда F07F40 по ГОСТ Р 55510-2013.
X ₉	Направление вращения выходного вала	1 – закрывание по часовой стрелке; 2 – закрывание против часовой стрелки.
X ₁₀	Степень защиты от проникновения пыли и воды по ГОСТ 14254-2015	1 – IP67; 2 – IP68; 3 – IP54 ²⁾ .
X ₁₁	Цвет окраски	1 – серый; 2 – по спецификации заказа.

Xi	Характеристика	Значения Xi
X ₁₂	Электрическое подключение	 0 – заглушки на местах трех кабельных вводов, штепсельное подключение внутри привода³⁾; 1 – кабельные вводы, 3 штуки, клеммное подключение внутри привода⁴⁾; 2 – кабельные вводы, 3 штуки, штепсельное подключение внутри привода⁵⁾; 3 – штепсельное подключение без кабельных вводов⁶⁾ (разъемы 3 штуки, на корпусе привода); 4 – заглушки на местах трех кабельных вводов, клеммное подключение внутри привода³⁾; 5 – покупные кабельные вводы 3 штуки (сальники), клеммное подключение внутри привода^{2), 4)}.
X ₁₃	Специальное исполнение	 К – специальное исполнение для применения в установках с повышенным уровнем вибрации, в частности, в компрессорных установках; Т – исполнение с тормозом обратного хода; В – высоковольтное исполнение с электропитанием от трехфазной сети переменного тока с напряжением 660 В⁷⁾; Э – исполнение для энергетики; отсутствие символа - нет специального исполнения.

Примечания

- 1 Присоединительные размеры привода указаны в приложении Г. Присоединительные размеры арматуры должны соответствовать требованиям для присоединительных фланцев из ряда МК, АК, АЧ, Б, В, Г, Д по ГОСТ Р 55510-2013, предъявляемым к ответному присоединению. Группа ведущих элементов для присоединительных фланцев из ряда F07...F40 по ГОСТ Р 55510-2013 оговаривается при заказе и указывается в паспорте привода.
- 2 Только у приводов общепромышленного исполнения.
- 3 Приводы поставляются:
- конструктивная схема 40:
 - с тремя заглушками для клеммного подключения: с двумя резьбовыми отверстиями $M25\times1,5$ и одним $M20\times1,5$ для установки кабельных вводов;
 - с тремя заглушками для штепсельного подключения: с тремя резьбовыми отверстиями $M25\times1,5$ для установки кабельных вводов;
- конструктивные схемы 41, 410:
 - с тремя заглушками для клеммного подключения: с тремя резьбовыми отверстиями M25×1,5 для установки кабельных вводов;
 - с тремя заглушками для штепсельного подключения: с тремя резьбовыми отверстиями M25×1,5 для установки кабельных вводов;
- конструктивные схемы 43, 430, 44 (только для штепсельного подключения) с двумя резьбовыми отверстиями $M32\times1,5$ и одним $M50\times1,5$ для установки кабельных вводов.
- 4 Только для приводов конструктивных схем 40, 41 и 410. Наличие брони и диаметры подключаемых кабелей оговариваются при заказе и указываются в паспорте привода.
- 5 Наличие брони и диаметры подключаемых кабелей оговариваются при заказе и указываются в паспорте привода.
- 6 Только у приводов общепромышленного исполнения со степенью защиты от проникновения пыли и воды IP54 по ГОСТ 14254-2015.
- 7 Данное исполнение возможно для приводов:
- с Х₂=В всех конструктивных схем;
- с X_2 =С конструктивных схем 40, 41, 410.

Пример условного обозначения привода взрывозащищенного исполнения с маркировкой взрывозащиты 1Ex db IIB T4 Gb по ГОСТ 31610.0-2014 для запорной арматуры с присоединительным фланцем типа АК по ГОСТ Р 55510-2013, с верхним пределом настройки ограничителя крутящего момента 120 Н·м,

частотой вращения выходного вала 45 об/мин, с механическим блоком управления двенадцатого варианта исполнения с пределом настройки путевых выключателей от 12,5 до 40 оборотов выходного вала, с первым вариантом температурного исполнения, с кулачковым присоединением вала привода к валу арматуры, с направлением вращения, обеспечивающим закрывание арматуры по часовой стрелке, степенью защиты от пыли и воды IP68 по ГОСТ 14254-2015, с серым цветом окраски и электрическим подключением посредством кабельных вводов с клеммным подключением внутри привода, без специального исполнения:

Пример условного обозначения привода общепромышленного исполнения (значения остальных характеристик как в предыдущем примере):

Пример условного обозначения привода взрывозащищенного исполнения с маркировкой взрывозащиты 1Ex db IIC T4 Gb по ГОСТ 31610.0-2014 (значения остальных характеристик как в предыдущем примере):

Приступать к работе с приводом разрешается только после ознакомления с настоящим РЭ.

Соблюдение изложенных в данном РЭ правил транспортирования, хранения, установки, подключения приводов и их эксплуатации являются необходимым условием их правильной и безопасной работы. При несоблюдении условий, перечисленных в данном РЭ, значения параметров, характеристик приводов, их безопасная работа и установленный срок службы не гарантируются.

В данном руководстве для обозначения наиболее важных операций приняты следующие пиктограммы:

Значок ВАЖНО

Указывает на действия и процедуры, которые имеют важное значение для обеспечения правильной работы привода.

Значок ВНИМАНИЕ

Указывает на действия и процедуры, несоблюдение которых может повлечь причинение вреда обслуживающему персоналу и используемым оборудованию и материалам.

1 Описание и работа

1.1 Назначение изделия

Приводы предназначены для дистанционного и местного управления запорной и запорно-регулирующей трубопроводной арматурой многооборотного типа, а также неполноповоротной и прямоходной арматурой (далее – арматура) при их использовании в комбинации со вспомогательными механизмами.

Приводы $\mathbf{ЭП4X_1B-X_3...}$ имеют взрывозащищенное исполнение с видом взрывозащиты "взрывонепроницаемая оболочка "d" по ГОСТ IEC 60079-1-2013 и уровнем взрывозащиты "взрывобезопасный" с маркировкой взрывозащиты 1Ex db IIB T4 Gb по ГОСТ 31610.0-2014. Данные приводы могут устанавливаться во взрывоопасных зонах помещений и наружных установок согласно ГОСТ IEC 60079-10-1-2011 и ГОСТ IEC 60079-14-2011 в соответствии с маркировкой взрывозащиты 1Ex db IIB T4 Gb.

Приводы $\mathbf{ЭП4X_1C-X_3}$... имеют взрывозащищенное исполнение с видом взрывозащиты "взрывонепроницаемая оболочка "d" по ГОСТ IEC 60079-1-2013 и уровнем взрывозащиты "взрывобезопасный" с маркировкой взрывозащиты 1Ex db IIC T4 Gb по ГОСТ 31610.0-2014. Данные приводы могут устанавливаться во взрывоопасных зонах помещений и наружных установок согласно ГОСТ IEC 60079-10-1-2011 и ГОСТ IEC 60079-14-2011 в соответствии с маркировкой взрывозащиты 1Ex db IIC T4 Gb.

Условия эксплуатации приводов в части допустимых внешних воздействий механических и климатических факторов, а также электромагнитных помех определены в разделе 1.2.

Возможность применения приводов по иному назначению и в условиях, отличных от указанных в данном РЭ, должна быть согласована с заводом-изготовителем.

Завод-изготовитель не несёт ответственности за возможный ущерб, причиненный при использовании приводов не по назначению и в условиях, отличных от указанных в данном РЭ, а также при нарушении указаний, содержащихся в данном РЭ, в указанных случаях вся ответственность за возможные риски полностью возлагается на потребителя.

Приводы с механическим блоком управления серии М1 обеспечивают выполнение функций, представленных в таблице 16 (базовый набор функций), и в таблице 1в (опциональный набор функций).

Таблица 16 – Базовый набор функций привода с блоком управления серии М1

Функции управления арматурой:

а) вращение выходного вала привода посредством электродвигателя привода в направлении закрытия и открытия арматуры (автоматическое управление арматурой), электродвигатель привода подключается к сети питания внешней аппаратурой по командам, формируемым в удаленном (дистанционном) пульте управления;

- б) вращение выходного вала привода посредством ручного дублера в направлении закрытия и открытия арматуры (ручное управление арматурой);
- в) ручное переключение из автоматического режима управления арматурой в режим ручного управления арматурой (у приводов конструктивных схем 40, 41 и 410);
- г) автоматическое переключение из ручного режима управления арматурой в режим автоматического управления арматурой.

Функции сигнализации $^{1)}$:

- а) сигнализация о достижении настраиваемых уровней крутящего момента на выходном валу привода раздельно для движения на открытие и на закрытие арматуры посредством срабатывания (смены состояния) двух электромеханических выключателей (далее моментные выключатели), один выключатель сигнализатор уровня момента открытия, другой сигнализатор уровня момента закрытия,
- б) сигнализация о достижении настраиваемого положения выходного вала привода, раздельно для движения на открытие и на закрытие арматуры, посредством двух электромеханических концевых выключателей (один сигнализатор открытого состояния арматуры, другой сигнализатор закрытого состояния).

Функции индикации: индикация крайних положений запорного органа арматуры и его текущего положения посредством местного указателя положения в долях от полного хода запорного органа арматуры.

Функция блокировки: блокировка ручного дублера, в целях предотвращения его несанкционированного включения (у приводов конструктивных схем 40, 41 и 410).

Функции настройки:

- а) задание значений крутящего момента на выходном валу привода, вызывающих срабатывание моментных выключателей;
- б) задание положений выходного вала привода, достижение которых вызывает срабатывание путевых выключателей;
- в) задание путевого диапазона блокировки сигнала превышения момента раздельно для движения на открытие и на закрытие арматуры в диапазоне 0–15 % от верхнего предела настройки путевых выключателей (опция, см. таблица 1в, таблица 1г);
- г) установка на ноль сопротивления потенциометра обратной связи (опция, см. таблица 1в);
- д) настройка токового сигнализатора положения (опция, см. таблица 1в).

Функция антиконденсатного подогрева:

 подогрев блока посредством электрического подогревателя с автоматическим включением и выключением последнего

Примечание

1 Данные функции могут использоваться внешними устройствами управления для отключения привода, а также для блокировки возможности повторного включения двигателя привода.

Таблица 1в – Опциональный набор функций привода и коды исполнения блоков управления серии M1

	управления серии					,		3.7	13)
	Į.	Ko	д исп	олне	ния б		в сері	ии М	l - ′
No	Функции	M1	z_1	\mathbf{Z}_2	Z ₃	Z	7 -	7.	7-
0	Базовый набор функций привода с блоком серии		L 1	L 2	L 3	Z ₄	Z ₅	Z ₆	Z ₇
	М1 (см. таблицу 1б)	1							
1	Сигнализация о двух промежуточных положениях выходного вала посредством двух путевых (промежуточных) выключателей		0/1						
2	Сигнализация о текущем положении выходного вала посредством изменения сопротивления потенциометра ¹⁾			0/1					
3	Сигнализация о текущем положении выходного вала посредством токового сигнала, изменяющегося пропорционально пути, пройденному выходным валом привода $^{1)}$.				0/1				
4	Сигнализация факта вращения выходного вала привода посредством замыкания и размыкания сухих контактов выключателя (блинкера) при изменении положения входного путевого вала блока - 1 импульс на 1 оборот выходного вала привода (оснащение блока управления блинкером по отдельному заказу)					0/1			
5	Сигнализация о достигаемых положениях и моментах посредством четырехконтактных выключателей (код z_5 =0) или трехконтактных выключателей (код z_5 =1)						0/1		
6	Блокировка (байпас) сигнала превышения (заданного при настройке блока) значения крутящего момента привода в начальный период движения из положения, соответствующего открытому и закрытому состоянию арматуры (с раздельной настройкой для движения на открытие и на закрытие арматуры) на протяжении заданного при настройке блока пути, проходимого выходным валом привода							0/1	
7	Блокировка возможности повторного включения двигателя привода по электрической цепи, содержащей нормально замкнутый контакт моментного выключателя, размыканием которого был выключен двигатель привода при достижении крутящего момента, заданного при настройке блока (фиксация моментных выключателей) 4)								0/1

Примечания

¹ Блок управления может реализовывать либо функцию №2 либо функцию №3 (т.е. совместная реализация указанных функций невозможна).

² Четырехконтактный выключатель содержит гальванически разделенные нормально разомкнутый и нормально замкнутый контакты, допускающие управление двумя гальванически не связанными между собой цепями; трехконтактный выключатель содержит один переключающий контакт.

³ Буква "М" в конце кода исполнения блока управления, означает исполнение с микровыключателями, обеспечивающими коммутацию токов от 1 до 400 мА в диапазоне напряжений от 15 до 60 В.

⁴ Для исполнений, согласованных при заказ .

Порядок определения кода, обозначающего набор функций, реализуемых блоком управления серии М1

Обозначение конкретного исполнения блока серии M1 записывается как M1Z, где Z - десятичное число, определяемое по формуле:

$$Z = 1 z_1 + 2z_2 + 4z_3 + 8z_4 + 16z_5 + 32z_6 + 64z_7$$

в которой величины z_1 , z_2 ... z_7 согласно таблице 1в принимают значение 1 или 0, если функция с номером, совпадающим с номером величины z_i , соответственно включена или не включена в набор функций, реализуемых блоком управления.

Соответствие кода исполнения блоков управления серии М1, реализуемым дополнительным функциям, представлено в приложении В.

Обозначение конкретного исполнения блока серии М1 записывается как M1Z.S, где S - десятичное число, определяющее верхний предел настройки путевых выключателей в оборотах выходного вала, выбираемое из таблицы 1г.

Таблица 1г – Пределы настройки путевых выключателей в блоках управления серии М1 (число оборотов выходного вала)

Верхний предел	2,5	5	10	20	40	80	160	320	630	1250
Нижний предел	0,025	1,6	3,2	6,3	12,5	25	50	100	200	400

Примеры:

- а) для блока, реализующего только базовый набор функций, значения z_1 =0, z_2 =0 ... z_7 =0, следовательно Z =0, получаем код набора функций: M10, условное обозначение блока с диапазоном настройки путевых выключателей от 7 до 20 оборотов выходного вала: M10.20;
- б) для блока, реализующего базовый набор функций и дополнительно функцию №2 "сигнализация о текущем положении выходного вала посредством изменения сопротивления потенциометра", значения z_1 =0, z_2 =1, z_3 =0 ... z_7 =0, следовательно Z =2, получаем код набора функций: М12, условное обозначение блока с диапазоном настройки путевых выключателей от 120 до 320 оборотов выходного вала: М12.320;
- в) для блока, реализующего базовый набор функций и дополнительно функции: №2 "сигнализация о текущем положении выходного вала посредством изменения сопротивления потенциометра" и №6 "Блокировка сигнала превышения заданного при настройке блока значения крутящего момента ...", значения z_1 =0, z_2 =1, z_3 =0, z_4 =0, z_5 =0, z_6 =1, z_7 =0, следовательно Z =2+32=34, код набора функций: М134, условное обозначение блока с диапазоном настройки путевых выключателей от 7 до 20 оборотов выходного вала: М134.20.

1.2 Технические характеристики

- 1.2.1 Габаритные размеры приводов представлены на рисунках 1а, 1б, 1в, 1г, 1д, 1е и в таблицах 2а, 2б, 2в, 2г, 2д, 2е. Центр массы обозначен как ЦМ.
- 1.2.2 Основные параметры и характеристики приводов соответствуют значениям, представленным в таблицах 3а, 3б и приложении Д.
- 1.2.3 Привод обеспечивает заданные характеристики при питании от трехфазной сети переменного тока с напряжением 380 В (660 В для приводов высоковольтного исполнения), частотой 50 Гц, допускаемые отклонения:
- напряжения: для взрывозащищенных приводов от минус 5 % до плюс 10 %, для приводов общепромышленного исполнения от минус 15 % до плюс 15 %;
 - частоты $\pm 2,5$ %.

При одновременном отклонении напряжения и частоты от номинальных значений сумма абсолютных процентных значений этих отклонений должна быть меньше 10 %, а каждое из отклонений должно не превышать указанной нормы (ГОСТ Р 52776-2007).

- 1.2.4 Приводы сохраняет работоспособность в произвольном пространственном положении.
- 1.2.5 Сопротивление изоляции электрических цепей относительно корпуса привода и между собой при измерительном напряжении от 100 до 500В составляет не менее 20 МОм при нормальных условиях, не менее 5 МОм при верхнем значении температуры рабочих условий, не менее 2 МОм при верхнем значении влажности рабочих условий.
- 1.2.6 Прочность изоляции электрических цепей при температуре окружающего воздуха 20 ± 5 °C и влажности от 30 % до 80 % соответствует требованиям ГОСТ 7192-89.
- 1.2.7 При вращении маховика ручного дублера привода усилие на ободе маховика составляет не более 150 Н при отсутствии нагрузки на выходном валу привода, не более 400 Н при нагружении привода моментом M_2 для конструктивных схем 40, 41 и 410 и не более 735 Н при нагружении привода моментом M_2 для конструктивных схем 43, 430 и 44. Недопустимо прилагать к маховику ручного дублера усилия, превышающие 600 Н для конструктивных схем 40, 41 и 410 и не более 1100 Н для конструктивных схем 43, 430 и 44. Усилие включения ручного дублера при указанных нагружениях привода составляет не более 350 Н.

На приводах, поставляемых на объекты ПАО "Газпром", усилие на ободе маховика ручного дублера при перестановке - не более 150 H, в начале движения допускается увеличение нагрузки до 450 H.

При приведении выходного вала привода в действие электродвигателем привода, маховик ручного дублера должен оставаться неподвижным (допускается вращение маховика с небольшой скоростью).

- 1.2.8 Привод обеспечивает самоторможение, то есть при отключенном электропитании двигателя момент нагружения не приводит к вращению выходного вала привода (данное требование не применимо к приводам конструктивной схемы 41 с частотой вращения выходного вала 125 и 180 об/мин).
 - 1.2.9 При работе привода в режиме нагружения моментом 0,7М₂:
 - отклонение частоты вращения выходного вала привода от значения n_1 должно быть не более ± 15 %;
 - токи в каждой из трех фаз двигателя привода различаются между собой не более, чем на 20 %.

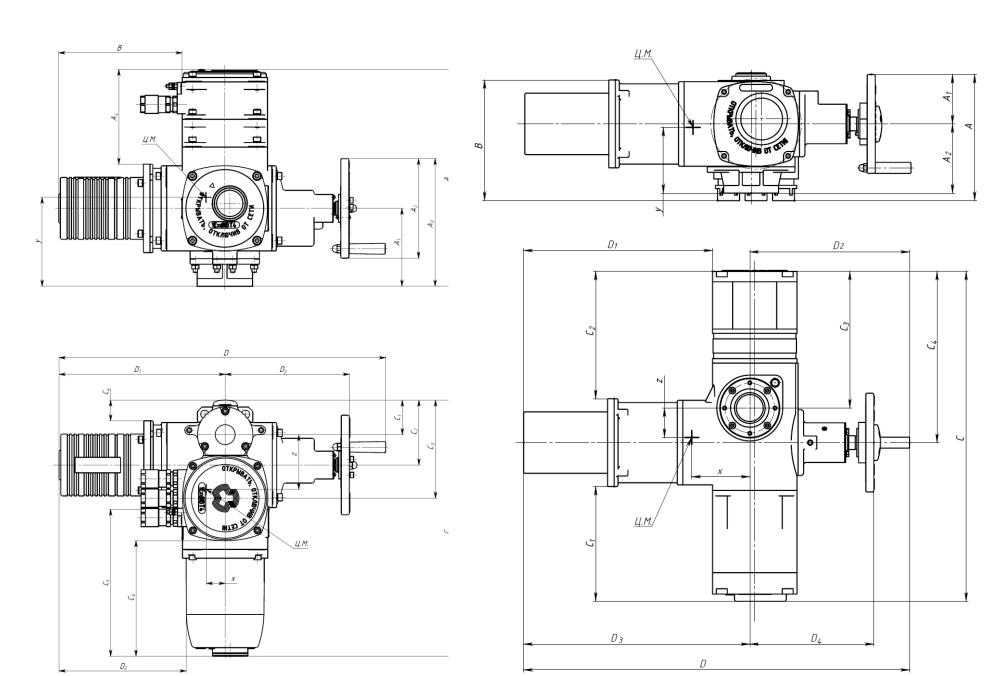


Рисунок 1a – Габаритные размеры привода конструктивной схемы 40

Рисунок 1б – Габаритные размеры привода конструктивной схемы 41

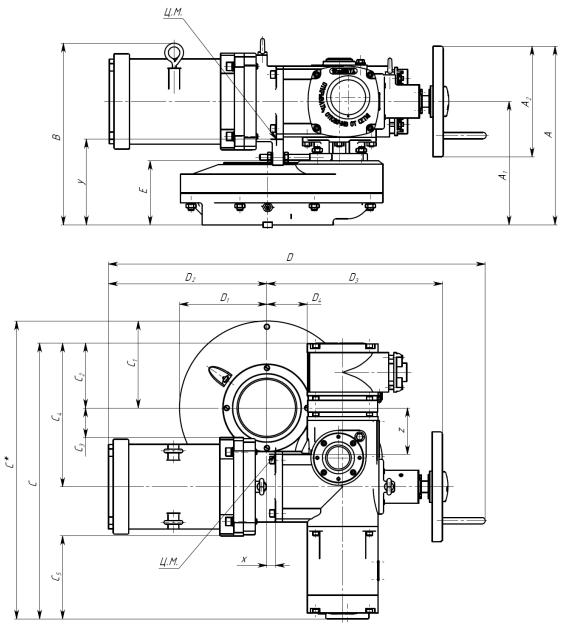
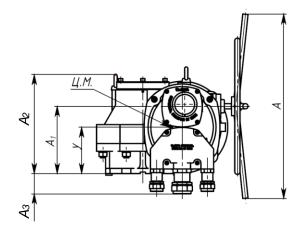



Рисунок 1в – Габаритные размеры привода конструктивной схемы 410

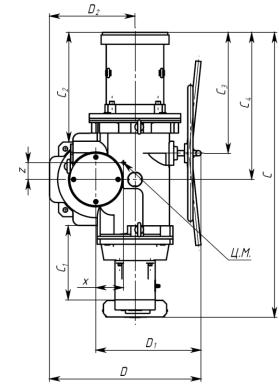


Рисунок 1г – Габаритные размеры привода конструктивной схемы 43

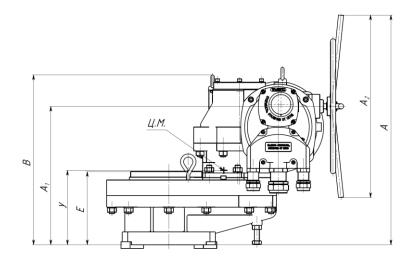


Рисунок 1д – Габаритные размеры привода конструктивной схемы 430

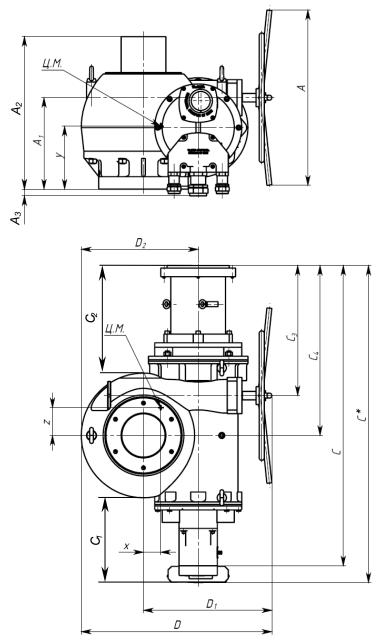


Рисунок 1e – Габаритные размеры привода конструктивной схемы 44

14

Таблица 2а – Габаритные размеры приводов ЭП4 конструктивной схемы 40 с блоком управления серии М1

Условное								Раз	меры	, MM									рдин М., м	
обозначение привода	A	\mathbf{A}_1	A_2	A_3	\mathbf{A}_4	В	C	C_1	C_2	C_3	C_4	C_5	C_6	D	D_1	D_2	D_3	X	у	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -15-4																				
ЭП4 Х ₁ Х ₂ -Х ₃ -15-5,6					175	174					41	269		570	251		174	-12	166	106
ЭП4 Х ₁ Х ₂ -Х ₃ -15-8					173	1/4					41	209		370	231		1/4	-12	100	100
ЭП4 X_1X_2 - X_3 -15-11																				[
ЭП4 X_1X_2 - X_3 -15-16																				1
ЭП4 X_1X_2 - X_3 -15-22	390	138	180	228			464	63	118	178			209			254				1
ЭП4 X_1X_2 - X_3 -15-32	390	136	100	220	175	241	404	03	110	176	41	269	209	637	318	234	241	-30	164	103
ЭП4 X_1X_2 - X_3 -15-45					173	2 4 1					41	209		037	310		2 4 1	-30	104	103
ЭП4 X_1X_2 - X_3 -15-63																				1
ЭП4 X_1X_2 - X_3 -15-90																				
ЭП4 X_1X_2 - X_3 -15-125					169	269					35	264		665	346		269	-62	159	95
ЭП4 X_1X_2 - X_3 -15-180					107	207					33	204		003	340		207	-02	137	<i>))</i>
ЭП4 X_1X_2 - X_3 -30-4					175	174					41	269		570	251		174	-12	170	107
ЭП4 Х ₁ Х ₂ -Х ₃ -30-5,6																				
ЭП4 X_1X_2 - X_3 -30-8																				1
ЭП4 X_1X_2 - X_3 -30-11																				1
ЭП4 X_1X_2 - X_3 -30-16					175	241					41	269		637	318		241	-29	168	103
ЭП4 Х ₁ Х ₂ -Х ₃ -30-22	393	141	180	231			464	63	118	178			209			254				1
ЭП4 X_1X_2 - X_3 -30-32	393	141	100	231			404	03	110	170			209			234				1
ЭП4 X_1X_2 - X_3 -30-45																				
ЭП4 X_1X_2 - X_3 -30-63																				
ЭП4 X_1X_2 - X_3 -30-90					169	269					35	264		665	346		269	-62	163	95
ЭП4 X_1X_2 - X_3 -30-125					109	209					33	204		003	340		209	-0∠	103	93
ЭП4 X_1X_2 - X_3 -30-180																				

Условное								Раз	меры	, MM									рдин М., м	
обозначение привода	A	A_1	A_2	A_3	A_4	В	С	C_1	C_2	C_3	C_4	C_5	C_6	D	D_1	D_2	D_3	X	у	Z
ЭП4 X_1X_2 - X_3 -60-4																				
ЭП4 X_1X_2 - X_3 -60-5,6																				
ЭП4 Х ₁ Х ₂ -Х ₃ -60-8					175	241					41	269		637	318		241	-29	195	101
ЭП4 X_1X_2 - X_3 -60-11					173	241					71	207		037	310		241	-2)	173	101
ЭП4 X_1X_2 - X_3 -60-16																				
ЭП4 Х ₁ Х ₂ -Х ₃ -60-22	424	172	180	262			464	63	118	178			209			254				
ЭП4 Х ₁ Х ₂ -Х ₃ -60-32	724	1/2	100	202			404	03	110	170			20)			234				
ЭП4 Х ₁ Х ₂ -Х ₃ -60-45																				
ЭП4 X_1X_2 - X_3 -60-63					169	269					35	264		665	346		269	-62	191	94
ЭП4 X_1X_2 - X_3 -60-90																				
ЭП4 X_1X_2 - X_3 -60-125																				
ЭП4 X_1X_2 - X_3 -60-180					169	319					35	264		715	396		319	-93	189	90
ЭП4 Х ₁ Х ₂ -Х ₃ -120-4					175	241					41	269		637	318		241	-29	195	101
ЭП4 X_1X_2 - X_3 -120-5,6																				
ЭП4 X_1X_2 - X_3 -120-8					169	269					35	264		665	346		269	-62	191	94
ЭП4 X_1X_2 - X_3 -120-11					175	241					41	269		637	318		241	-29	195	101
ЭП4 X_1X_2 - X_3 -120-16																				
ЭП4 X_1X_2 - X_3 -120-22	424	172	180	262			464	63	118	178			209			254				
ЭП4 X_1X_2 - X_3 -120-32	'-'	1,2	100	202	169	269	101	03	110	170	35	264	20)	665	346	231	269	-62	191	94
ЭП4 X_1X_2 - X_3 -120-45																				
$ 9\Pi 4 X_1 X_2 - X_3 - 120 - 63 - \dots $																				<u> </u>
$9\Pi 4 X_1 X_2 - X_3 - 120 - 90 - \dots$																				
$ \exists \Pi 4 X_1 X_2 - X_3 - 120 - 125 - \dots $					169	319					35	264		715	396		319	-93	189	90
ЭП4 X_1X_2 - X_3 -120-180																				l

15

16

Таблица 2б – Габаритные размеры приводов ЭП4 конструктивной схемы 41 с блоком управления серии М1

																·	
Условное						Pa	азмер	οы, м≀	М							рдин М., м	
обозначение привода	A	A_1	A_2	В	C	C_1	C_2	C_3	C_4	D	D_1	D_2	D_3	D_4	X	у	Z
ЭП4 X_1X_2 - X_3 -60-4																	
ЭП4 X_1X_2 - X_3 -60-5,6																	
ЭП4 X_1X_2 - X_3 -60-8				210		216	244			691	332		400		51	120	47
ЭП4 X_1X_2 - X_3 -60-11				210		210	∠ 44			091	332		400		31	120	4/
ЭП4 X_1X_2 - X_3 -60-16																	
ЭП4 X_1X_2 - X_3 -60-22	230	90	126		603			251	314			291		226			
ЭП4 X_1X_2 - X_3 -60-32	230	70	120	220	003	209	234	231	314	663	304	271	372	220	77	121	17
ЭП4 X_1X_2 - X_3 -60-45				220		209	234			003	304		312		/ /	121	17
ЭП4 X_1X_2 - X_3 -60-63										715	356		424				
ЭП4 X_1X_2 - X_3 -60-90				222		207	230			713	330		727		76	120	48
ЭП4 X_1X_2 - X_3 -60-125				222		207	230			743	384		452		70	120	40
ЭП4 X_1X_2 - X_3 -60-180										773	J0 -1		732				
ЭП4 X_1X_2 - X_3 -90-180	230	90	126	222	603	207	230	251	314	743	384	291	452	226	103	121	50
ЭП4 Х ₁ Х ₂ -Х ₃ -120-4				220		209	234			703	344		412		61	120	47
ЭП4 X_1X_2 - X_3 -120-5,6				220		209	234			703	344		412		01	120	47
ЭП4 X_1X_2 - X_3 -120-8				210		216	244			691	332		400		51	120	47
ЭП4 X_1X_2 - X_3 -120-11				210		210	244			071	332		400		31	120	47
ЭП4 X_1X_2 - X_3 -120-16				220		209	234			703	344		412		61	120	47
ЭП4 X_1X_2 - X_3 -120-22	230	90	126	220	603	207	234	251	314	703	344	291	412	226	01	120	47
ЭП4 X_1X_2 - X_3 -120-32	230	90	120		003			231	314	715	356	291	424	220	76	120	48
ЭП4 X_1X_2 - X_3 -120-45										/13	330		+4		70	120	40
ЭП4 X_1X_2 - X_3 -120-63				222		207	231										
ЭП4 X_1X_2 - X_3 -120-90						207	231			743	384		452		103	121	50
ЭП4 Х ₁ Х ₂ -Х ₃ -120-125										143	304		432		103	121	50
ЭП4 X_1X_2 - X_3 -120-180																	

Условное обозначение привода						P	азмер	οы, м	M							рдин .М., м	
ооозначение привода	A	A_1	A_2	В	C	C_1	C_2	C_3	C_4	D	D_1	D_2	D_3	D_4	X	У	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -250-4															51	120	47
ЭП4 Х ₁ Х ₂ -Х ₃ -250-5,6				220		209	234			703	344		412		31	120	47
ЭП4 Х ₁ Х ₂ -Х ₃ -250-8				220		209	234			703	344		412		61	120	47
ЭП4 X_1X_2 - X_3 -250-11															01	120	47
ЭП4 X_1X_2 - X_3 -250-16	230	90								775	416	291	484		76	120	48
ЭП4 Х ₁ Х ₂ -Х ₃ -250-22	230	70	129		603			251	314	113	410	271	404	226	70	120	40
ЭП4 Х ₁ Х ₂ -Х ₃ -250-32			12)	241	003	207	230	231	314					220			
ЭП4 X_1X_2 - X_3 -250-45										743	384		452		103	121	50
ЭП4 X_1X_2 - X_3 -250-63																	
ЭП4 X_1X_2 - X_3 -250-90				245						749	390		458		167	91	53
ЭП4 X_1X_2 - X_3 -250-125	260	120		245		184	209			819	432	319	500		205	112	64
ЭП4 Х ₁ Х ₂ -Х ₃ -250-180	200	120		243						019	432	319	300		227	124	68
ЭП4 X_1X_2 - X_3 -400-180	260	120	129	245	603	184	209	251	314	819	432	319	500	226	227	124	68
ЭП4 X_1X_2 - X_3 -500-4										831	444		512				
ЭП4 Х ₁ Х ₂ -Х ₃ -500-5,6										031	444		312		86	121	49
ЭП4 Х ₁ Х ₂ -Х ₃ -500-8				241		207	230			803	416		484		80	121	49
ЭП4 Х ₁ Х ₂ -Х ₃ -500-11										803	410		404				
ЭП4 Х ₁ Х ₂ -Х ₃ -500-16										831	444		512		117	121	51
ЭП4 Х ₁ Х ₂ -Х ₃ -500-22	260	120	129		603			251	314			319		226	227	124	68
ЭП4 Х ₁ Х ₂ -Х ₃ -500-32															221	124	08
ЭП4 Х ₁ Х ₂ -Х ₃ -500-45				245		184	209			819	432		500		205	112	64
ЭП4 Х ₁ Х ₂ -Х ₃ -500-63				243		104	209			019	432		300		205	112	64
ЭП4 Х ₁ Х ₂ -Х ₃ -500-90															227	124	68
ЭП4 Х ₁ Х ₂ -Х ₃ -500-125															227	124	68

Таблица 2в – Габаритные размеры приводов ЭП4 конструктивной схемы 410 с блоком управления серии М1

Условное обозначение		<u> </u>	<u>F</u>	<u></u>				Разм							<u></u>	<u>r</u>		Коо	рдин	аты
привода	A	Α	Λ	В	C*	С	C_1	C_2	C_3	C_4	C ₅	D	D_1	D_2	D_3	D_4	Е	'	М., м	
$9\Pi 4 X_1 X_2 - X_3 - 630 - 1,5 - \dots$	A	A_1	A_2	Ъ	C	C	C_1	C_2	C_3	C_4	C ₅	ט	D_1	D_2	D_3	D_4	Ľ	X 47	182	98
$9\Pi 4 X_1 X_2 - X_3 - 630 - 1, 3 - \dots$																		-7	201	117
$9\Pi 4 X_1X_2-X_3-630-5,6$												759		312				44	182	99
$ \Im\Pi 4 X_1 X_2 - X_3 - 630 - 8 - \dots $									90		207							47	182	98
$\Im\Pi 4 X_1 X_2 - X_3 - 630 - 11 - \dots$	358		180															-7	201	117
ЭП4 Х ₁ Х ₂ -Х ₃ -630-16		268		405	651	605	190	144		316		753	190	306	382	88	139	44	182	99
$9\Pi 4 X_1 X_2 - X_3 - 630 - 22 - \dots$													-, -	20.7				-7	201	117
ЭП4 Х ₁ Х ₂ -Х ₃ -630-32												752		305				22	191	107
ЭП4 X_1X_2 - X_3 -630-45									67		184							-7	201	117
ЭП4 Х ₁ Х ₂ -Х ₃ -630-63	388		240									823		348				-9	199	113
ЭП4 Х ₁ Х ₂ -Х ₃ -630-90																		-7	201	117
ЭП4 X_1X_2 - X_3 -1000-1,5																		43	177	93
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-4												759		312				43	177	93
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-5,6									90		207							44	180	96
ЭП4 X_1X_2 - X_3 -1000-8	358		180									753		306				40	178	94
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-11		268		405	651	605	190	144		316		155	190	300	382	88	139	41	181	97
ЭП4 X_1X_2 - X_3 -1000-16		208		403	031	003	190	144		310		752	190	305	362	00	139	19	187	101
ЭП4 X_1X_2 - X_3 -1000-22												132		303				20	190	104
ЭП4 X_1X_2 - X_3 -1000-32									67		184							-9	199	113
ЭП4 X_1X_2 - X_3 -1000-45	388		240									823		348				-10	198	111
ЭП4 X_1X_2 - X_3 -1000-63																		-9	199	113
ЭП4 X_1X_2 - X_3 -1500-1,5												759		312				42	176	92
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-4									90		207	139		312				42	176	92
ЭП4 X_1X_2 - X_3 -1500-5,6	358		180						70		207	753		306				-10	196	110
ЭП4 X_1X_2 - X_3 -1500-8	330		100									133		300				39	177	93
ЭП4 X_1X_2 - X_3 -1500-11		268		405	651	605	190	144		316		752	190	305	382	88	139	-10	196	110
ЭП4 X_1X_2 - X_3 -1500-16												132		303				19	186	101
ЭП4 X_1X_2 - X_3 -1500-22									67		184							-10	196	110
ЭП4 X_1X_2 - X_3 -1500-32	388		240									823		348				-10	194	108
ЭП4 X_1X_2 - X_3 -1500-45																		-10	194	110

Условное обозначение								Разм	еры,	, MM									рдин М., м	
привода	A	A_1	A_2	В	С	C*	C_1	C_2	C_3	C_4	C_5	D	D_1	D_2	D_3	D_4	Е	X	у	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-2																		-10	194	108
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-4									90		207	841		366				-10	194	108
ЭП4 X_1X_2 - X_3 -2000-5,6																		-10	196	110
ЭП4 X_1X_2 - X_3 -2000-8	388	268	240	405	651	605	190	144		316		823	190	348	382	88	139	-10	194	108
ЭП4 X_1X_2 - X_3 -2000-11	300	200	240	403	031	003	170	144		310		023	170	J + 0	302	00	13)	-10	196	110
ЭП4 X_1X_2 - X_3 -2000-16									67		184	890		415				-10	194	108
ЭП4 X_1X_2 - X_3 -2000-22												823		348				-10	196	110
ЭП4 X_1X_2 - X_3 -2000-32												023		340				-10	194	108
ЭП4 X_1X_2 - X_3 -3000-1,5									90		207	787		312				-10	194	108
ЭП4 X_1X_2 - X_3 -3000-4									70		207	841		366				-10	194	108
ЭП4 X_1X_2 - X_3 -3000-5,6	388	268	240	405	651	605	190	144		316		823	190	348	382	88	139	-10	196	110
ЭП4 X_1X_2 - X_3 -3000-8	300	200	240	403	031	003	170	144	67	310	184		170	340	302	00	13)	-10	194	108
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-11									07		104	890		415				-10	196	110
ЭП4 X_1X_2 - X_3 -3000-16												823		348				-10	194	108

Таблица 2г – Габаритные размеры приводов ЭП4 конструктивной схемы 43 с блоком управления серии М1

Условное обозначение					Pa	азмер	Ю, М	M					Коој Ц.]	одина М., м	
привода	A	A_1	A_2	A_3	С	C_1	C_2	C_3	C_4	D	D_1	D_2	X	y	Z
ЭП4 X_1X_2 - X_3 -2000-45					1095		393	469	569				114	177	91
ЭП4 X_1X_2 - X_3 -2000-63	660	298	455	47	1136	350	434	510	610	584	404	330	115	177	111
ЭП4 X_1X_2 - X_3 -2000-90	000	290	433	4/	1136	330	434	510	610	304	404	330	115	177	111
ЭП4 X_1X_2 - X_3 -2000-125					1136		434	510	610				115	177	111
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-22					1060		358	434	534				116	176	124
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-32					1095		393	469	569				114	177	91
ЭП4 X_1X_2 - X_3 -3000-45	660	298	455	47	1136	350	434	510	610	584	404	330	115	177	111
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-63					1136		434	510	610				115	177	111
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-90					1164		462	538	638				116	177	124

Условное обозначение					Pa	азмер	οы, м∶	М					-	одина М., м	
привода	A	A_1	A_2	A_3	С	C_1	C_2	C_3	C_4	D	D_1	D_2	X	y	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -4000-4					1165		461	537	637						
$9\Pi 4 X_1 X_2 - X_3 - 4000 - 5,6 - \dots$					11.60		450	505	<i>c</i> 2 <i>c</i>				102	206	69
$\Im\Pi 4 X_1 X_2 - X_3 - 4000 - 8 - \dots$					1163		459	535	635						
ЭП4 X_1X_2 - X_3 -4000-11					1165		461	537	637				100		<u> </u>
ЭП4 X_1X_2 - X_3 -4000-16	660	298	455	68	1100	352	396	472	572	584	404	330	102	206	54
ЭП4 X_1X_2 - X_3 -4000-22													102	206	69
ЭП4 X_1X_2 - X_3 -4000-32					1212		508	584	684				102	206	69
ЭП4 X_1X_2 - X_3 -4000-45					1100		396	472	572				106	206	107
ЭП4 X_1X_2 - X_3 -4000-63					1100		370	7/2	312				100	200	107
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-4															
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-5,6					1163		459	535	635				102	206	69
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-8													102	200	09
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-11	660	298	455	68	1212	352	508	584	684	584	404	330			
ЭП4 X_1X_2 - X_3 -6000-16	000	270	433	00	1212	332	300	304	004	304	707	330	102	206	54
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-22					1100		396	472	572				102	206	54
ЭП4 X_1X_2 - X_3 -6000-32					1237		533	609	709				102	206	69
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-40					1125		421	497	597				106	206	107
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-4					1163		459	535	635						
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-5,6								333	033				104	206	70
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-8					1174		470	546	646						
ЭП4 X_1X_2 - X_3 -8000-11	660	298	455	68	1212	352	508	584	684	584	404	330			
ЭП4 X_1X_2 - X_3 -8000-16													106	206	106
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-22					1100		396	472	572				100		
ЭП4 X_1X_2 - X_3 -8000-32					1237		533	609	709						l

Таблица 2д – Габаритные размеры приводов ЭП4 конструктивной схемы 430 с блоком управления серии М1

Условное обозначение		1			, ,				ы, мі						<i>J</i> 1		Коорди		.М., мм
привода	A	A_1	A_2	В	С	C_1	C_2	C_3	C_4	D	D_1	D_2	D_3	D_4	D_5	Е	X	у	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-22	864	534	660	691	1098	283	331	471	571	922	677	248	96	278	245	282	63	287	30
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2																	60	289	37
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2,8					1163		390	535	635								60	289	37
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-4																	60	289	37
ЭП4 X_1X_2 - X_3 -12000-5,6	864	534	660	691	1212	283	439	584	684	922	677	248	96	278	245	282			
ЭП4 X_1X_2 - X_3 -12000-8	804	334	000	091	1212	203	437	304	004	922	077	240	90	270	243	202	63	287	30
ЭП4 X_1X_2 - X_3 -12000-11					1100		327	472	572										
ЭП4 X_1X_2 - X_3 -12000-16					1237		464	609	709								56	292	51
ЭП4 X_1X_2 - X_3 -12000-22					1125		352	497	597								56	292	51
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-2					1163		390	535	635										
ЭП4 X_1X_2 - X_3 -16000-4					1212		439	584	684								60	289	37
ЭП4 X_1X_2 - X_3 -16000-5,6	864	534	660	691	1212	283	433	304	004	922	677	248	96	278	245	282			
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-8	804	334	000	091	1100	203	327	472	572	922	077	240	90	278	243	262	63	287	30
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-11					1237		464	609	709								56	292	51
ЭП4 X_1X_2 - X_3 -16000-16					1125		352	497	597								56	292	51
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-2					1163		390	535	635										
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-4					1212		439	584	684								60	289	37
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-5,6	864	534	660	691	1100	287	327	472	572	922	677	248	96	278	245	282			
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-8					1237		464	609	709								63	287	30
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-11					1125		352	497	597								56	292	51
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-2					1174		401	546	646								60	289	37
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-4	864	534	660	691	1212	287	439	584	684	922	677	249	96	278	245	282	60	289	37
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-5,6	804	334	000	091	1100	287	327	472	572	922	0//	248	90	2/8	245	282	56	292	51
ЭП4 X_1X_2 - X_3 -24000-8					1237		464	609	709								30	<i>L7L</i>	31

Таблица 2е – Габаритные размеры приводов ЭП4 конструктивной схемы 44 с блоком управления серии М1

Условное обозначение						Раз	меры	, MM						-	рдина М., м	
привода	A	A_1	A_2	A_3	C*	С	C_1	C_2	C_3	C_4	D	D_1	D_2	X	у	Z
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-45	660	367	612	28	1331	1320	399	432	522	682	767	517	470	67	260	108
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-22	660	367	612	28	1331	1320	399	432	522	682	767	517	470	67	260	108

Таблица 3а – Основные параметры приводов ЭП4

		ЮГО	крутяще	ы настр ничител го моме Н∙м	ія ента ¹⁾ ,	Крут: мом Н	ент, М	ельный	фланец по ГОСТ Р 55510-2013 ⁹⁾	Отверстие под шпиндель арматуры, мм		нной блер	е число уктора ⁶⁾	вода , пее
Условное обозначение привода	Конструктивная схема	Частота ицения выходи вала, об/мин	нижний ⁷⁾	верх в реж S2	киме 2-	рабоч в реж S2	киме 2-	Присоединительный 1	фланец СТ Р 5551	остие под шпи арматуры, мм	диаметр маховика, мм	передаточное число	Передаточное число выходного редуктора	Масса привода, кг, не более
	Ke	вра		15 мин	30 мин	15 мин	30 мин	ифІ	Õ	3epc	циа	чи	lep(IXOZ	Ma
		n_1	M_1	$M_2^{(3)}$	M_3	M_4	M_5	I	ШО	OTI	ма	пер	I Bb	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ЭП4 Х ₁ Х ₂ -Х ₃ -15-4		4			0	,	0		10	11	12	13	11	30
$9\Pi 4 X_1 X_2 - X_3 - 15 - 5, 6 - \dots$		5,6												30
ЭП4 X_1X_2 - X_3 -15-8		8												30
ЭП4 X_1X_2 - X_3 -15-11		11												30
ЭП4 X_1X_2 - X_3 -15-16		16												32
ЭП4 X_1X_2 - X_3 -15-22	40	22	6	15	10	7,5	5	F07	МК	25	180	28:1	1	32
ЭП4 Х ₁ Х ₂ -Х ₃ -15-32	40	32	U	13	10	7,5	3	1.07	IVIIX	23	160	20.1	1	32
ЭП4 X_1X_2 - X_3 -15-45		45												32
ЭП4 Х ₁ Х ₂ -Х ₃ -15-63		63												32
ЭП4 X_1X_2 - X_3 -15-90		90												32
ЭП4 X_1X_2 - X_3 -15-125		125												38
ЭП4 X_1X_2 - X_3 -15-180		180												38
ЭП4 X_1X_2 - X_3 -30-4		4												32
ЭП4 X_1X_2 - X_3 -30-5,6		5,6												32
ЭП4 X_1X_2 - X_3 -30-8		8												32
ЭП4 X_1X_2 - X_3 -30-11	-	11												32
ЭП4 X_1X_2 - X_3 -30-16		16							MK,					32
ЭП4 Х ₁ Х ₂ -Х ₃ -30-22	40	22	12	30	21	15	10	F07	AY,	32	180	28:1	1	32
$\Im \Pi 4 X_1 X_2 - X_3 - 30 - 32 - \dots$		32	_	- •	_		_		AK					32
ЭП4 Х ₁ Х ₂ -Х ₃ -30-45		45												32
ЭП4 Х ₁ Х ₂ -Х ₃ -30-63	-	63												39
$\Im\Pi 4 X_1 X_2 - X_3 - 30 - 90 - \dots$	-	90												39
$9\Pi 4 X_1 X_2 - X_3 - 30 - 125 - \dots$	-	125												39
ЭП4 X_1X_2 - X_3 -30-180		180												39

23

Продолжение таблицы За

продолжение гаолицы 3										- 4.4	10	10	4.4	1 4 5
1	2	3	4	5	6	7	8			11	12	13	14	15
ЭП4 X_1X_2 - X_3 -60-4		4												32
ЭП4 X_1X_2 - X_3 -60-5,6		5,6												32
ЭП4 Х ₁ Х ₂ -Х ₃ -60-8		8												32
ЭП4 Х ₁ Х ₂ -Х ₃ -60-11		11												32
ЭП4 X_1X_2 - X_3 -60-16		16							3.676					32
ЭП4 Х ₁ Х ₂ -Х ₃ -60-22	40	22	25	60	40	20	20	F07,	MK,	22	100	20.1	1	32
ЭП4 Х ₁ Х ₂ -Х ₃ -60-32	40	32	25	60	40	30	20	F10	АЧ, АК	32	180	28:1	1	38
ЭП4 Х ₁ Х ₂ -Х ₃ -60-45		45							AK					38
ЭП4 Х ₁ Х ₂ -Х ₃ -60-63		63												38
ЭП4 X_1X_2 - X_3 -60-90		90												38
ЭП4 Х ₁ Х ₂ -Х ₃ -60-125		125												38
ЭП4 X_1X_2 - X_3 -60-180		180												42
ЭП4 X_1X_2 - X_3 -120-4		4												32
ЭП4 X_1X_2 - X_3 -120-5,6		5,6												32
ЭП4 X_1X_2 - X_3 -120-8		8												38
ЭП4 X_1X_2 - X_3 -120-11		11												32
ЭП4 X_1X_2 - X_3 -120-16		16												38
ЭП4 X_1X_2 - X_3 -120-22	40	22	50	120	90	60	45	F10	АЧ,	32	180	28:1	1	38
ЭП4 Х ₁ Х ₂ -Х ₃ -120-32	70	32	30	120	70		73	110	АК	32	100	20.1	1	38
ЭП4 X_1X_2 - X_3 -120-45		45												38
ЭП4 X_1X_2 - X_3 -120-63		63												38
ЭП4 X_1X_2 - X_3 -120-90		90												42
ЭП4 X_1X_2 - X_3 -120-125		125												42
ЭП4 X_1X_2 - X_3 -120-180		180												42

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			4	5	6	/	ð	9	10	11	12	_	14	
ЭП4 Х ₁ Х ₂ -Х ₃ -60-4		4										42:1		45
$9\Pi 4 X_1 X_2 - X_3 - 60 - 5, 6 - \dots$		5,6										42:1		45
ЭП4 Х ₁ Х ₂ -Х ₃ -60-8		8										42:1		45
ЭП4 Х ₁ Х ₂ -Х ₃ -60-11		11										28:1		45
ЭП4 Х ₁ Х ₂ -Х ₃ -60-16		16						770.7				42:1		41
ЭП4 Х ₁ Х ₂ -Х ₃ -60-22	41	22	25	60	40	30	20	F07,	АЧ,	32	180	28:1	1	41
ЭП4 Х ₁ Х ₂ -Х ₃ -60-32		32						F10	АК			42:1		43
$9\Pi 4 X_1 X_2 - X_3 - 60 - 45 - \dots$		45										28:1		43
$9\Pi 4 X_1 X_2 - X_3 - 60 - 63 - \dots$		63										42:1		46
ЭП4 Х ₁ Х ₂ -Х ₃ -60-90		90										28:1		46
$9\Pi 4 X_1 X_2 - X_3 - 60 - 125^{5}$		125										21:1		47
ЭП4 Х ₁ Х ₂ -Х ₃ -60-180 ⁵⁾	4.4	180	2.6	0.0		4.7	22	F05 F10		22	100	14:1		51
$\Im\Pi 4 X_1 X_2 - X_3 - 90 - 180 - \dots^{5}$	41	180	36	90	65	45	33	F07,F10	АЧ,АК	32	180	14:1	1	52
ЭП4 X_1X_2 - X_3 -120-4		4										42:1		43
ЭП4 X_1X_2 - X_3 -120-5,6		5,6										42:1		43
ЭП4 X_1X_2 - X_3 -120-8		8										42:1		41
ЭП4 X_1X_2 - X_3 -120-11		11										28:1		47
ЭП4 X_1X_2 - X_3 -120-16		16							АЧ,			42:1		43
ЭП4 Х ₁ Х ₂ -Х ₃ -120-22	41	22	50	120	90	60	45	F07,	AK,	32	180	28:1	1	43
ЭП4 Х ₁ Х ₂ -Х ₃ -120-32		32	20	120			1.5	F10	Б	32	100	42:1	•	47
ЭП4 X_1X_2 - X_3 -120-45		45							_			28:1		47
ЭП4 X_1X_2 - X_3 -120-63		63										42:1		50
ЭП4 X_1X_2 - X_3 -120-90		90										28:1		50
ЭП4 X_1X_2 - X_3 -120-125 ⁵⁾		125										21:1		52
ЭП4 X_1X_2 - X_3 -120-180 ⁵⁾		180										14:1		64
ЭП4 X_1X_2 - X_3 -250-4		4										42:1		43
ЭП4 X_1X_2 - X_3 -250-5,6		5,6										42:1		43
ЭП4 X_1X_2 - X_3 -250-8		8										42:1		43
ЭП4 X_1X_2 - X_3 -250-11		11										28:1		49
ЭП4 X_1X_2 - X_3 -250-16		16									180	42:1		54
ЭП4 X_1X_2 - X_3 -250-22	41	22	100	250	180	125	95	F14	Б	45	160	28:1	1	46
ЭП4 Х ₁ Х ₂ -Х ₃ -250-32	41	32	100	230	100	123	73	1'14	D	43		42:1	1	52
ЭП4 Х ₁ Х ₂ -Х ₃ -250-45		45										28:1		52
ЭП4 Х ₁ Х ₂ -Х ₃ -250-63		63										42:1		62
ЭП4 Х ₁ Х ₂ -Х ₃ -250-90		90										28:1		63
ЭП4 Х ₁ Х ₂ -Х ₃ -250-125 ⁵⁾		125									240	21:1		68
ЭП4 X_1X_2 - X_3 -250-180 ⁵⁾		180									240	14:1		75

продолжение таолицы 3		1		1										1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ЭП4 X_1X_2 - X_3 -400-180 ⁵⁾	41	180	160	400	280	200	140	F14	Б	45	240	14:1	1	73
ЭП4 X_1X_2 - X_3 -500-4		4										28:1		47
ЭП4 X_1X_2 - X_3 -500-5,6		5,6										28:1		47
ЭП4 X_1X_2 - X_3 -500-8		8										28:1		47
ЭП4 X_1X_2 - X_3 -500-11		11										28:1		47
ЭП4 X_1X_2 - X_3 -500-16		16										28:1		51
ЭП4 X_1X_2 - X_3 -500-22	41	22	200	500	360	250	180	F14	Б	45	240	28:1	1	73
ЭП4 X_1X_2 - X_3 -500-32		32										28:1		73
ЭП4 X_1X_2 - X_3 -500-45		45										28:1		68
ЭП4 X_1X_2 - X_3 -500-63		63										28:1		73
ЭП4 X_1X_2 - X_3 -500-90		90										28:1		73
ЭП4 X_1X_2 - X_3 -500-125		125										14:1		73
ЭП4 Х ₁ Х ₂ -Х ₃ -630-1,5		2										130:1	3,1	88
ЭП4 X_1X_2 - X_3 -630-4		4										86:1	3,1	88
ЭП4 X_1X_2 - X_3 -630-5,6		5,6										130:1	3,1	88
ЭП4 X_1X_2 - X_3 -630-8		8									180	86:1	3,1	88
ЭП4 X_1X_2 - X_3 -630-11		11									100	130:1	3,1	111
ЭП4 X_1X_2 - X_3 -630-16	410	16	255	630	440	315	210	F16	В	70		86:1	3,1	90
ЭП4 Х ₁ Х ₂ -Х ₃ -630-22		22										130:1	3,1	105
ЭП4 Х ₁ Х ₂ -Х ₃ -630-32		32										86:1	3,1	105
ЭП4 X_1X_2 - X_3 -630-45 ⁵⁾		45										65:1	3,1	111
ЭП4 X_1X_2 - X_3 -630-63 ⁵⁾		63									240	43:1	3,1	112
ЭП4 X_1X_2 - X_3 -630-90 ⁵⁾		90										29:1	2,1	111
ЭП4 X_1X_2 - X_3 -1000-1,5		2										193:1	4,6	90
ЭП4 X_1X_2 - X_3 -1000-4		4										193:1	4,6	91
ЭП4 X_1X_2 - X_3 -1000-5,6		5,6										128:1	4,6	89
ЭП4 X_1X_2 - X_3 -1000-8		8									180	193:1	4,6	94
ЭП4 X_1X_2 - X_3 -1000-11	410	11	400	1000	700	500	350	F16	В	70		128:1	4,6	91
ЭП4 X_1X_2 - X_3 -1000-16	710	16	700	1000	700	300	330	110	D	/0		193:1	4,6	103
ЭП4 X_1X_2 - X_3 -1000-22		22										128:1	4,6	100
ЭП4 X ₁ X ₂ -X ₃ -1000-32 ⁵⁾		32										88:1	6,3	112
$\Theta\Pi4 X_1X_2-X_3-1000-45^{5)}$		45									240	64:1	4,6	113
$\Theta\Pi4 X_1X_2-X_3-1000-63^{5)}$		63										43:1	3,1	112

Продолжение таолицы 3	a													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-1,5		2										176:1	6,3	92
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-4		4										176:1	6,3	92
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-5,6		5,6									180	264:1	6,3	117
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-8		8									180	176:1	6,3	94
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-11	410	11	600	1500	1050	750	525	F25	Β, Γ	120		264:1	6,3	112
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-16		16										176:1	6,3	103
ЭП4 X ₁ X ₂ -X ₃ -1500-22 ⁵⁾		22										132:1	6,3	117
ЭП4 X ₁ X ₂ -X ₃ -1500-32 ⁵⁾		32									240	88:1	6,3	116
ЭП4 X ₁ X ₂ -X ₃ -1500-45 ⁵⁾		45										64:1	4,6	117
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-2		2										128:1	4,6	115
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-4		4										128:1	4,6	116
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-5,6		5,6										128:1	4,6	117
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-8	410	8	800	2000	1400	1000	700	F25	Г	120	240	128:1	4,6	110
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-11	410	11	800	2000	1400	1000	700	F23	1	120	240	128:1	4,6	110
ЭП4 X_1X_2 - X_3 -2000-16		16										128:1	4,6	116
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-22		22										128:1	4,6	117
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-32 ⁵⁾		32										88:1	6,3	116
ЭП4 X_1X_2 - X_3 -2000-45 ¹¹⁾		45										96:1		193
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-63 ¹¹⁾	43	63	800	2000	1400	1000	700	F25	Γ	95	520	96:1	1	197
$\Theta \Pi 4 X_1 X_2 - X_3 - 2000 - 90^{11}$	43	90	800	2000	1400	1000	700	1.23	1	93	320	96:1	1	207
ЭП4 X_1X_2 - X_3 -2000-125 ¹¹⁾		125										96:1		207
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-1,5		2										176:1	6,3	116
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-4		4										176:1	6,3	116
ЭП4 X_1X_2 - X_3 -3000-5,6	410	5,6	1200	3000	2100	1500	1050	F25	Γ	120	240	176:1	6,3	117
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-8	410	8	1200	3000	2100	1300	1030	F23	1	120	240	176:1	6,3	110
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-11		11										176:1	6,3	110
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-16		16										176:1	6,3	116
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-22		22										96:1		189
ЭП4 X ₁ X ₂ -X ₃ -3000-32 ¹¹⁾		32										96:1		189
$\Theta \Pi 4 X_1 X_2 - X_3 - 3000 - 45^{11}$	43	45	1200	3000	2100	1500	1050	F25	Γ	120	240	96:1	1	194
ЭП4 X_1X_2 - X_3 -3000-63 ¹¹⁾]	63										96:1		204
ЭП4 X_1X_2 - X_3 -3000-90 ¹¹⁾		90										96:1		219

2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$9\Pi 4 X_1 X_2 - X_3 - 4000 - 4 - \dots$		4										96:1		194
ЭП4 Х ₁ Х ₂ -Х ₃ -4000-5,6		5,6										96:1		194
ЭП4 X_1X_2 - X_3 -4000-8		8										96:1		203
ЭП4 X_1X_2 - X_3 -4000-11		11										96:1		194
ЭП4 X_1X_2 - X_3 -4000-16	43	16	1600	4000	2800	2000	1400	F30	Г, Д	95	520	96:1	1	206
ЭП4 X_1X_2 - X_3 -4000-22		22										96:1		200
ЭП4 X_1X_2 - X_3 -4000-32 ¹¹⁾		32										96:1		220
$\Theta \Pi 4 X_1 X_2 - X_3 - 4000 - 45^{11}$		45										96:1		248
ЭП4 X_1X_2 - X_3 -4000-63 ¹¹⁾		63										96:1		219
ЭП4 X_1X_2 - X_3 -6000-4		4										96:1		194
ЭП4 X_1X_2 - X_3 -6000-5,6		5,6										96:1		194
ЭП4 X_1X_2 - X_3 -6000-8		8										96:1		203
ЭП4 X_1X_2 - X_3 -6000-11	43	11	2400	6000	4200	3000	2100	F30	Г, Д	95	520	96:1	1	194
ЭП4 X_1X_2 - X_3 -6000-16	43	16	2400	0000	4200	3000	2100	1.30	1,д	93	320	96:1	1	206
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-22		22										96:1		206
ЭП4 X_1X_2 - X_3 -6000-32 ¹¹⁾		32										96:1		248
ЭП4 X_1X_2 - X_3 -6000-40 ¹¹⁾		40										96:1		248
ЭП4 X_1X_2 - X_3 -8000-4		4										96:1		194
ЭП4 X_1X_2 - X_3 -8000-5,6		5,6							Д			96:1		194
ЭП4 X_1X_2 - X_3 -8000-8		8						 				96:1		206
ЭП4 X_1X_2 - X_3 -8000-11	43	11	3200	8000	5600	4000	2800	F30	Г, Д	95	520	96:1	1	248
ЭП4 X_1X_2 - X_3 -8000-16		16						_	Г, Д			96:1		248
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-22		22						_	Г, Д			96:1		248
ЭП4 X_1X_2 - X_3 -8000-32 ¹¹⁾		32							Г, Д			96:1		250
ЭП4 X_1X_2 - X_3 -8000-22	430	22	3200	8000	5600	4000	2800	F40	Д	150	520	182:1	1,9	423
ЭП4 X_1X_2 - X_3 -8000-45	44	45	3200	8000	5600	4000	2800	F35, F40	Д	150	520	96:1	1	350
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2		2										182:1	1,9	423
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2,8		2,8										182:1	1,9	423
ЭП4 X_1X_2 - X_3 -12000-4		4										182:1	1,9	423
ЭП4 X_1X_2 - X_3 -12000-5,6	430	5,6	4800	12000	8400	6000	4200	F40	Д	150	520	182:1	1,9	450
ЭП4 X_1X_2 - X_3 -12000-8	730	8	7000	12000	3700	3000	7200	1 40	д	150	320	182:1	1,9	430
ЭП4 X_1X_2 - X_3 -12000-11		11										182:1	1,9	431
ЭП4 X_1X_2 - X_3 -12000-16		16										182:1	1,9	472
ЭП4 X_1X_2 - X_3 -12000-22 ¹¹⁾		22										182:1	1,9	480

Ŋ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-2		2										182:1	1,9	419
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-4		4										111:1	2,65	419
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-5,6	430	5,6						F40				111:1	2,65	420
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-8	430	8	6400	16000	11200	8000	5600	1.40	Д	150	520	111:1	2,65	430
ЭП4 X_1X_2 - X_3 -16000-11 ¹¹⁾		11										111:1	2,65	473
ЭП4 X_1X_2 - X_3 -16000-16 ¹¹⁾		16										111:1	2,65	473
ЭП4 X_1X_2 - X_3 -16000-22	44	22						F35, F40				96:1	1	380
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-2		2										150:1	3,56	419
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-4		4										150:1	3,56	419
ЭП4 X_1X_2 - X_3 -20000-5,6	430	5,6	8000	20000	14000	10000	7500	F40	Д	150	520	150:1	3,56	470
ЭП4 X_1X_2 - X_3 -20000-8 ¹¹⁾		8										150:1	3,56	472
ЭП4 X_1X_2 - X_3 -20000-11 ¹¹⁾		11										150:1	3,56	472
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-2		2										150:1	3,56	419
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-4	430	4	9600	24000	16800	12000	8400	F40	π	150	520	150:1	3,56	419
ЭП4 X_1X_2 - X_3 -24000-5,6	430	5,6	9000	24000	10800	12000	0400	F40	Д	130	320	150:1	3,56	470
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-8		8										150:1	3,56	472

Примечания

- 1 Момент, при котором срабатывает ограничитель, настраивается раздельно и независимо в оба направления вращения выходного вала.
- 2 Допустимый средний крутящий момент на протяжении всего хода.
- 3 Допустимы исполнения приводов с настройкой ограничителя крутящего момента на значения 1,2М2, при условии исключения требования 1.2.10 РЭ.
- 4 Масса указана для приводов с фланцем наименьшим из указанных в графе 10 из алюминиевого сплава, с тремя кабельными вводами. Диапазон допустимого отклонения фактической массы привода составляет ± 10 % от указанной в таблице. Масса поставленного заказчику привода указана в паспорте привода.
- 5 Не самотормозящиеся. Самоторможение может быть обеспечено установкой тормоза обратного хода.
- 6 В качестве выходного редуктора используется редуктор многооборотный цилиндрический.
- 7 Для приводов специального исполнения, предназначенного для применения в установках с повышенным уровнем вибрации, нижний предел настройки ограничителя крутящего момента равен 60 % от момента M_2 .
- 9 Присоединительные размеры привода указаны в приложении Г. Присоединительные размеры арматуры должны соответствовать требованиям для присоединительных фланцев из ряда МК, АК, АЧ, Б, В, Г, Д по ГОСТ Р 55510-2013, предъявляемым к ответному присоединению. Группа ведущих элементов для присоединительных фланцев из ряда F07...F40 по ГОСТ Р 55510-2013 оговаривается при заказе и указывается в паспорте привода.
- 11 Данные исполнения оснащаются тормозом обратного хода.

Таблица 36 – Диапазоны настройки путевых выключателей приводов ЭП4 с блоком управления серии M1

Условное обозначение	Конструктивная	lokew yr	1			ойки бло	жа упр	авления	M1Z.S,	об	
привода	схема	S=2,5	S=5	S=10	S=20	S=40	S=80	S=160	S=320	S=630	S=1250
1	2	3	4	5	6	7	8	9	10	11	12
ЭП4 Х ₁ Х ₂ -Х ₃	40, 41, 43, 44	0,025-2,5	1,6-5	3,2-10	6,3-20	12,5-40	25-80	50-160	100-320	200-630	400-1250
ЭП4 Х ₁ Х ₂ -Х ₃ -630-1,5		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-4		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-5,6		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-8		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-11		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-16	410	_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-22		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-32		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-45		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-63		_	_	1-3,2	2-6,5	4-12,9	8,1-26	16-52	32-103	65-203	129-403
ЭП4 Х ₁ Х ₂ -Х ₃ -630-90		_	0,8-2,4	1,6-4,9	3,1-9,7	6,1-19	12-39	24-78	49-155	97-306	194-607
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-1,5		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-4		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 X_1X_2 - X_3 -1000-5,6		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-8		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-11	410	_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-16	410	_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-22		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-32		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-45		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-63			_	1-3,2	2-6,5	4-13	8-25	16-50	32-103	65-200	130-400
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-1,5		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-4		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-5,6		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-8		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-11	410	_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-16		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-22		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-32		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -1500-45		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270

ယ္

Продолжение таблицы 3б

1	2	3	4	5	6	7	8	9	10	11	12
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-2		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-4		-	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-5,6		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 X_1X_2 - X_3 -2000-8	410	_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 X_1X_2 - X_3 -2000-11	410	_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 X_1X_2 - X_3 -2000-16		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 X_1X_2 - X_3 -2000-22		_	_	0,7-2,2	1,4-4,3	2,7-8,7	5,4-17	11-35	22-70	44-137	87-270
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-32		-	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-1,5		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-4		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-5,6	410	_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-8	410	_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-11		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 X_1X_2 - X_3 -3000-16		_	_	_	1-3,2	2-6,3	4-12,5	8-25	16-50	31-100	65-200
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-22	430	_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2		_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2,8		-	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 X_1X_2 - X_3 -12000-4		-	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 X_1X_2 - X_3 -12000-5,6	430	-	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-8	430	_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-11		_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-16		_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-22		-	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660

ω

Продолжение таблицы 3б

1	2	3	4	5	6	7	8	9	10	11	12
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-2	430	_	0,8-2,6	1,7-5,3	3,3-10,5	6,6-20	13-42	26-85	53-170	105-330	210-660
ЭП4 X_1X_2 - X_3 -16000-4		-	_	1,2-3,8	2,4-7,5	4,7-15	9,4-30	19-60	38-120	75,5-237	151-471
ЭП4 X_1X_2 - X_3 -16000-5,6		_	_	1,2-3,8	2,4-7,5	4,7-15	9,4-30	19-60	38-120	75,5-237	151-471
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-8		_	_	1,2-3,8	2,4-7,5	4,7-15	9,4-30	19-60	38-120	75,5-237	151-471
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-11		_	_	1,2-3,8	2,4-7,5	4,7-15	9,4-30	19-60	38-120	75,5-237	151-471
ЭП4 X_1X_2 - X_3 -16000-16		_	_	1,2-3,8	2,4-7,5	4,7-15	9,4-30	19-60	38-120	75,5-237	151-471
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-2	430	_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 X_1X_2 - X_3 -20000-4		-	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-5,6		_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-8		-	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-11		_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-2	430	_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 X_1X_2 - X_3 -24000-4			_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-5,6		_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-8		_	_	0,9-2,8	1,8-5,6	3,5-11,3	7-22,5	14-45	28,2-90	57-177,5	113-352

- 1.2.10 Останавливающий момент на выходном валу привода при движении на открытие и закрытие арматуры превосходит момент M_2 не менее чем в 1,2 раза.
- 1.2.11 Во всех режимах работы привода с установившейся частотой вращения выходного вала n_1 ток, потребляемый приводом, не превышает ток максимального момента привода (см. приложение Д, таблица Д.1, графа 9).
- 1.2.12 Привод сохраняет значения параметров, характеристики и набор функциональных возможностей, соответствующие его варианту исполнения, в следующих режимах нагружения:
- режим кратковременного включения с длительностью нагрузки 3 минуты (режим S2-3 мин), соответствующий условиям: среднее значение момента нагрузки на интервале движения не должно превышать значения M_2 , при включении привода температура его корпуса должна быть равной температуре окружающей среды;
- режим кратковременного включения с длительностью нагрузки 15 минут (режим S2-15 мин), соответствующий условиям: среднее значение момента нагрузки на интервале движения не должно превышать значения M_4 , при включении привода температура его корпуса должна быть равной температуре окружающей среды;
- режим кратковременного включения с длительностью нагрузки 30 минут (режим S2-30 мин), соответствующий условиям: среднее значение момента нагрузки на интервале движения не должно превышать значения M_5 , при включении привода температура его корпуса должна быть равной температуре окружающей среды;
- режим повторно-кратковременного включения с продолжительностью включения (ПВ) 25 % от времени цикла нагружения, не превышающего 10 мин, и средним значением момента нагрузки на интервале движения не более 33 % от момента M_2 (режим S3-ПВ 25 %);
- режим повторно-кратковременного включения с частыми пусками при коэффициенте инерции (отношении момента инерции нагрузки к моменту инерции ротора двигателя и связанных с ним подвижных деталей привода и арматуры) F1 не более 4, ПВ не более 25 % и средним значением момента нагрузки на интервале движения не более 30 % от момента M_2 (режим S4-ПВ 25 %, F1<4, данный режим допустим для приводов только в варианте исполнения для запорно-регулирующей арматуры). Допустимое число включений в час привода в режиме S4-ПВ 25 % при нормальных условиях эксплуатации в зависимости от мощности двигателя указано в таблице 3в.

Таблица 3в – Допустимое число включений в час привода в режиме S4-ПВ 25 %

Мощность двигателя,	Допустимое число включений,			
кВт (не более)	в час			
2	900			
4	600			
10	300			
20	120			
30	90			

В режимах, перечисленных в данном пункте РЭ, среднее значение выходной мощности привода должно быть меньше значения, указанного в таблице 3г, следовательно момент нагрузки должен быть меньше значения момента, определяемого как отношение мощности, указанной в таблице 3г, к средней частоте вращения выходного вала привода, выраженной в рад/с, равной в режимах S2 значению n_1 , а в режимах S3 и S4 с ПВ 25% значению $0.25n_1$.

Таблица 3г - Допустимая мошность на выходном валу п	ривола. Вт
Tuestingu et Zenijenimusi mengireetb nu bbinegirem busij n	ривода, в г

Констр.	Режим						
схема	S2-3 мин	S2-15 мин	S2-30 мин	S3-ПВ 25%	S4-ΠB 25 %		
40	1900	800	500	100	90		
41	3700	1500	900	190	170		
410	3100	1200	700	160	140		
43	10000	8000	7000	1500	1350		
430	8000	6400	5840	1200	1000		

C учетом температуры окружающей среды допустимая мощность на выходном валу привода определяется как значение мощности, указанной в таблице 3г, умноженное на коэффициент $k_T = (100-Tc)/80$, где Tc - температура окружающей среды, выраженная в ^{o}C .

В указанных режимах текущее значение момента нагрузки может:

- превышать момент M_2 не более, чем в 2 раза;
- в режиме S2 превышать момент M_2 (в режиме S2-15 мин) и момент M_3 (в режиме S2-30 мин) на отрезке времени протяженностью не более 30 с;
- в режиме S3, S4 превышать момент M_2 на отрезках времени не более 10 % от интервала времени движения;
- превышать момент M_4 (в режиме S2-15 мин) и момент M_5 (в режимах S2-30 мин, S3, S4) на отрезках времени, суммарно не превышающих 10 % от интервала времени движения.

Время между подачей команды на выключение двигателя привода и на его включение в обратном направлении должно быть для взрывозащищенных приводов не менее 1 с, для приводов общепромышленного исполнения не менее 50 мс.

При работе в указанных режимах температура корпуса привода должна быть не более, чем на 70 °C, выше температуры окружающей среды (кроме приводов общепромышленного исполнения).

Для выключения электродвигателя при его перегреве предназначены контакты термовыключателя электродвигателя. Нормально замкнутые контакты термовыключателя размыкаются при температуре обмоток двигателя выше 125-130 °C и замыкаются при снижении температуры обмоток до 120-90 °C. Термовыключатель следует включать последовательно в цепь управления пускателем двигателя привода для выключения двигателя при размыкании контактов термовыключателя. Термовыключатель рекомендуется использовать во всех режимах работы привода.

- 1.2.13 Погрешность срабатывания моментных выключателей (отклонение фактического крутящего момента на выходном валу, приводящего к срабатыванию выключателя, от величины крутящего момента, заданного при настройке) должна быть не более ± 10 % от момента M_2 во всем диапазоне настройки ограничителя крутящего момента (не более ± 20 % для приводов специального исполнения для применения в установках с повышенным уровнем вибрации).
- 1.2.14 Погрешность срабатывания путевых выключателей (отклонение фактического положения выходного вала в момент срабатывания выключателя от положения, заданного при настройке) составляет не более ± 1 % от верхнего предела настройки путевых выключателей.
- 1.2.15 Диапазон настройки путевых выключателей соответствует пределам, указанным в таблице 36, при этом:
- а) в приводах с механическим блоком управления серии М1 диапазон настройки для конструктивных схем 40, 41, 43, 44 определяется верхним пределом, указанным в характеристиках блока управления, используемого в приводе (таблица 1г);
- б) пределы настройки, указанные для конструктивных схем 40, 41, 43, 44 уменьшаются в конструктивных схемах 410, 430 в R раз, где R передаточное число выходного редуктора привода (таблицы 3а и 36).
- 1.2.16 Уровень звукового давления, создаваемого приводом на расстоянии 1 м от его контура при работе на холостом ходу не превышает 68 дБА.
- 1.2.17 Привод удовлетворяет нормам помехоэмиссии установленных для класса "А" в соответствии с ГОСТ 32137-2013.
- 1.2.18 Привод имеет защиту от проникновения внутрь их оболочки пыли и воды, соответствующую уровню IP67 (опционно IP68, IP54) по ГОСТ 14254-2015.

Допустимые условия эксплуатации электроприводов серии ЭП4 в части глубины и продолжительности их возможного затопления водой следующие:

- а) для приводов со степенью защиты IP68 согласно ГОСТ 14254-2015:
- глубина погружения до 6 м от уровня воды до нижней точки корпуса привода;
- продолжительность нахождения в воде до 72 часов;
- привод может работать в погружённом режиме, возможно до 10 пусков и остановов привода, режим регулирования не возможен;
- б) для приводов со степенью защиты IP67 согласно ГОСТ 14254-2015:
- для приводов высотой менее 0,85 м допустимая глубина погружения до 1 м от уровня воды до нижней точки корпуса привода;
- для приводов высотой более 0,85 м допустимая глубина погружения до 0,15 м от уровня воды до верхней точки корпуса;
- продолжительность нахождения в воде не более 30 минут;
- температура воды не должна существенно отличаться от температуры корпуса привода (согласно ГОСТ 14254-2015 различие температур не более чем на 5°С);

- работа в погружённом режиме не предполагается;
- после ликвидации затопления привод сохраняет работоспособность;
- в) для приводов со степенью защиты IP54 согласно ГОСТ 14254-2015:
- оболочка привода обеспечивает защиту от брызг, падающих в любом направлении;
- привод во время и после воздействия брызг может работать во всех режимах, указанных в настоящем РЭ.
- 1.2.19 Микровыключатели блока управления привода и термовыключатель двигателя привода, реализующие "сухой" контакт, обеспечивают коммутацию:
- цепей переменного тока напряжением 220 В с силой тока от 0,02 до 0,5 А при активной нагрузке;
- цепей постоянного тока напряжением $24/48~\mathrm{B}$ с силой тока от $0,01~\mathrm{дo}~0,5~\mathrm{A}$ при активной нагрузке.

Контакты термовыключателя выводятся на клеммник и могут быть выведены из привода через кабельный ввод сигнальных либо силовых цепей.

1.2.20 Параметры надежности.

Вероятность безотказной работы в течение 4 лет при наработке до 3000 циклов для приводов запорной арматуры и 1 млн. пусков для приводов запорнорегулирующей арматуры в режимах и условиях, допускаемых настоящими РЭ, составляет не менее 0,98.

Назначенный срок службы привода составляет не менее 30 лет, при условии проведения регламентных работ и соблюдения режимов эксплуатации, определенных в руководстве по эксплуатации привода. Межремонтный период привода — 4 года. Назначенный ресурс за межремонтный период — не менее 30% ресурса привода.

Ресурс работы привода (средняя наработка до отказа) в режимах и условиях, допускаемых настоящим РЭ, указан в таблице 3д.

Таблица 3д – Ресурс работы привода

Крутящий момент, Н·м	Приводы запорной	Приводы запорно-регулирующей			
	арматуры	арматуры			
	Рабочие циклы,	Количество	Допустимое число		
	не менее	пусков,	включений,		
	HC MCHCC	млн.	в час		
15-120	20 000	5	$900^{1)} (1200^{2)}$		
250-1000	15 000	3,5	900 1) (1200 2)		
1500-4000	10 000	2,5	300		
6000-24000	5 000	2,0	120		

Примечания

¹ Для взрывозащищенных приводов.

² Для приводов общепромышленного исполнения.

1.2.21 Стойкость к внешним воздействиям.

Привод является стойким к синусоидальной вибрации в диапазоне частот $0,5\text{-}100~\Gamma$ ц с максимальной амплитудой ускорения $10~\text{m/c}^2~(1~\text{g})$).

Привод сохраняет значения параметров, указанные в данном РЭ, при воздействиях климатических факторов внешней среды, соответствующих варианту климатического исполнения и категории размещения привода (варианту рабочих условий), согласно таблице 4.

Таблица 4 – Условия эксплуатации приводов

	*Рабочи	е значения		Климатическое
_	температу	ры воздуха	Относительная	исполнение и
Вариант	при эксплуатации,°С		влажность воздуха	категория
температурного	Denvilee	нижнее	(верхнее значение)	размещения по
исполнения	верхнее		(верхнее значение)	ΓOCT 15150-69,
	значение	значение		но при этом *
1	+60	-25	100 % при 25 °C	У1*
2	+60	-40	100 70 при 23 С	
3	+60	-60	100 % при 25 °C	УХЛ1 [*]
4	+60	-10	100 % при 35 °C	T1 [*]
5	+40	-40	100 % при 25 °C	M1*
6	+40 -40		98 % при 25 °C	M5.1*

1.3 Устройство и работа

В состав привода входят следующие модули (рисунки 2а, 2б, 2в, 2г, 2д, 2е):

- модуль двигателя;
- модуль промежуточного редуктора (присутствует в некоторых исполнениях приводов конструктивных схем 41, 410, 43, 430, 44);
 - модуль основного редуктора;
 - модуль ручного дублера;
 - модуль питания;
 - блок управления;
 - присоединительный фланец;
 - выходной редуктор (у конструктивных схем 410 и 430).

В **модуле основного редуктора** размещен редуктор червячного типа. Вращение от электродвигателя 1 (рисунок 3), через промежуточный редуктор 2, передается на червяк 3 основного редуктора.

В приводах без выходного редуктора (конструктивные схемы 40, 41, 43, 44) вал червячного колеса 4 основного редуктора является выходным валом привода.

В приводах с выходным редуктором (конструктивные схемы 410 и 430) вращение от зубчатого колеса 13, расположенного на вале червячного колеса 4, передается через зубчатое колесо редуктора 14 на выходной вал редуктора 15, который и является выходным валом привода.

Выходной вал привода имеет ряд взаимозаменяемых вариантов исполнения в зависимости от присоединяемого фланца 5 и типа соединения с валом арматуры. Крутящий момент, создаваемый приводом, контролируется в двух направлениях движения (в прямом и обратном) с помощью моментоизмерительного механизма. Величина момента определяется по смещению червяка 3, поджатого с двух сторон пакетами тарельчатых пружин 6, по шлицам вала 7, передающего вращение на червяк 3 от модуля промежуточного редуктора 2.

Смещение червяка 3 посредством рычага преобразуется в поворот выходного вала моментоизмерительного механизма, передающего информацию о величине момента в блок управления 8. Вал 9 передает в блок управления информацию о положении выходного вала привода.

Червячный вал 7 опирается на конические роликовые подшипники и оканчивается с обеих сторон кулачковыми полумуфтами для соединения с одной стороны с электродвигателем 1 и с другой стороны – с приводом ручного дублера 10, 11. Переключение с электрического на ручной привод и обратно производится посредством толкателя, помещенного внутри полого червячного вала.

Корпус червячного редуктора заполнен маслом.

Каждому габариту привода соответствует один вариант исполнения корпуса модуля основного (червячного) редуктора с двумя кратными вариантами передаточного числа. Исполнение выходного вала не зависит от передаточного числа и определяется габаритом фланца 5 и типом соединения с валом арматуры.

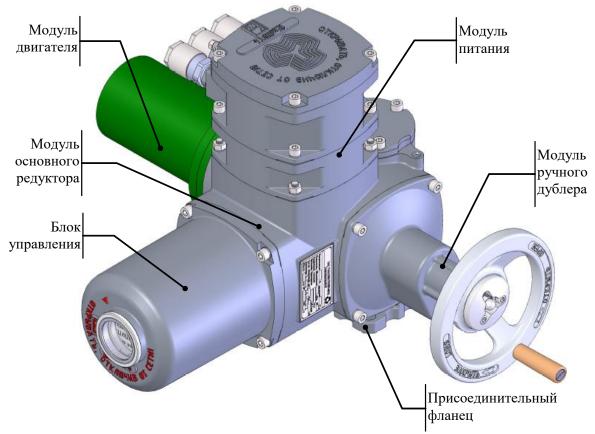


Рисунок 2а – Привод конструктивной схемы 40

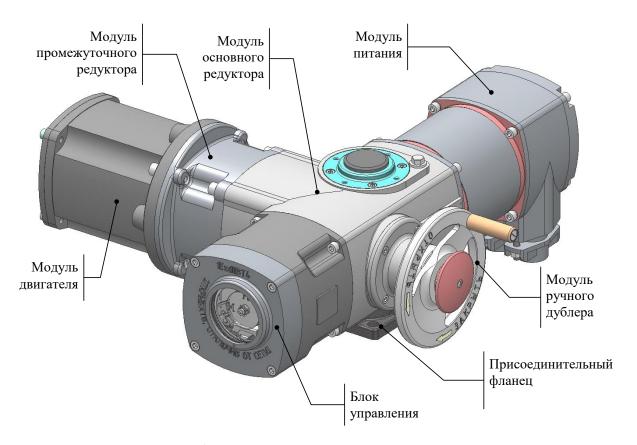


Рисунок 26 – Привод конструктивной схемы 41

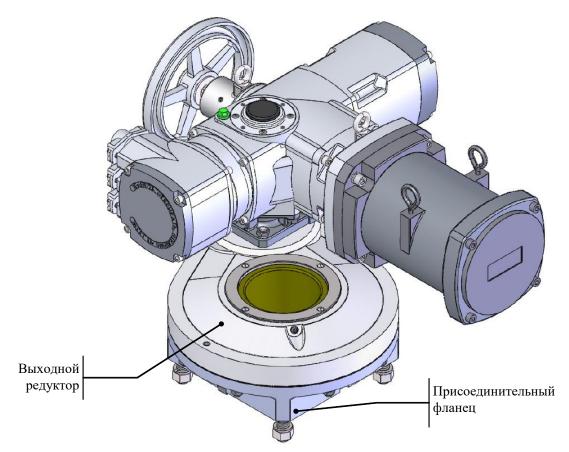


Рисунок 2в – Привод конструктивной схемы 410

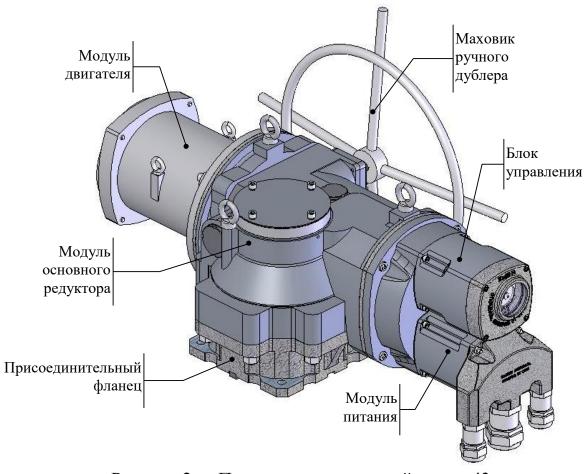


Рисунок 2г – Привод конструктивной схемы 43

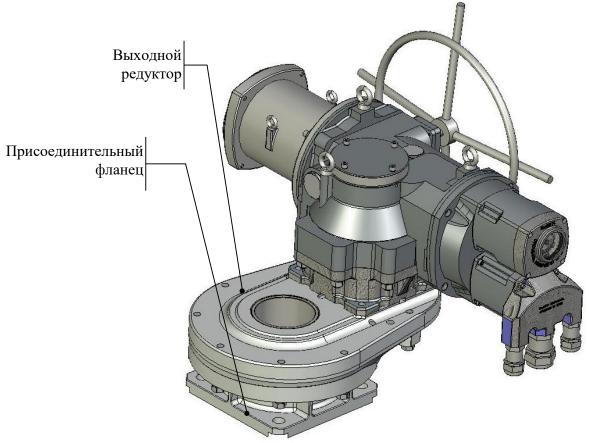


Рисунок 2д – Привод конструктивной схемы 430

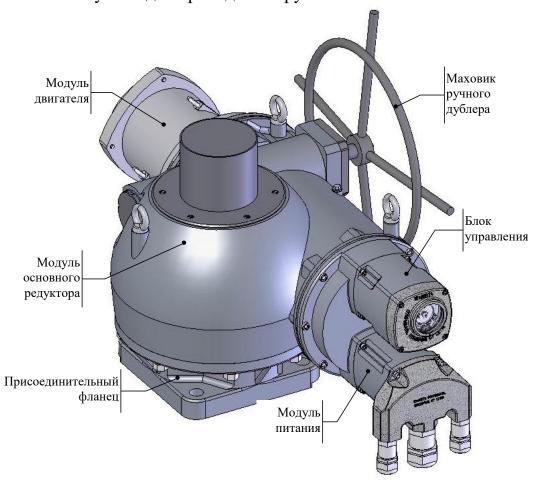


Рисунок 2е – Привод конструктивной схемы 44

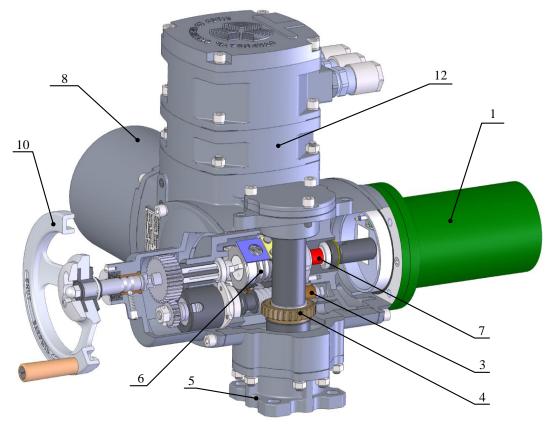


Рисунок 3а – Устройство привода конструктивной схемы 40

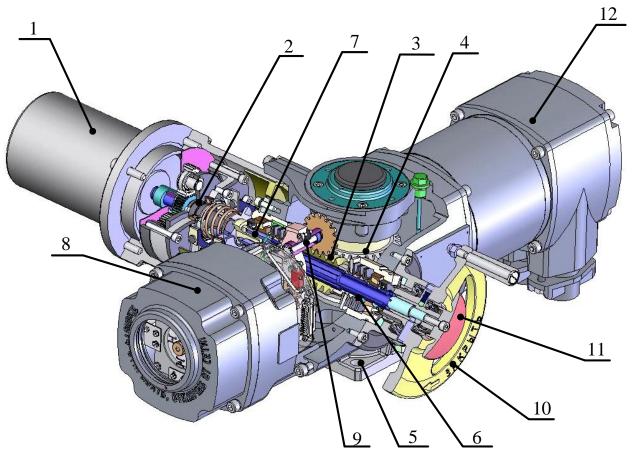


Рисунок 3б – Устройство привода конструктивной схемы 41

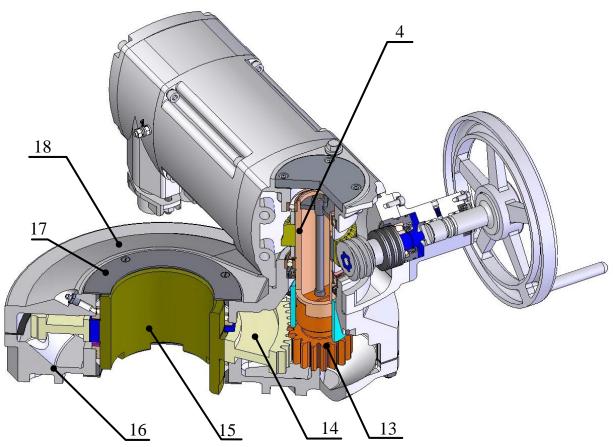


Рисунок 3в – Устройство привода конструктивной схемы 410

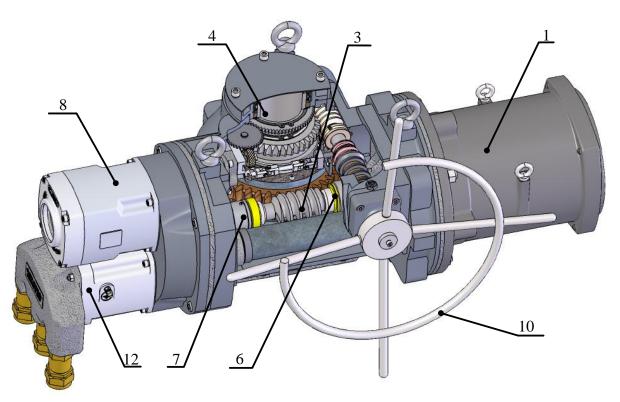


Рисунок 3г – Устройство привода конструктивной схемы 43

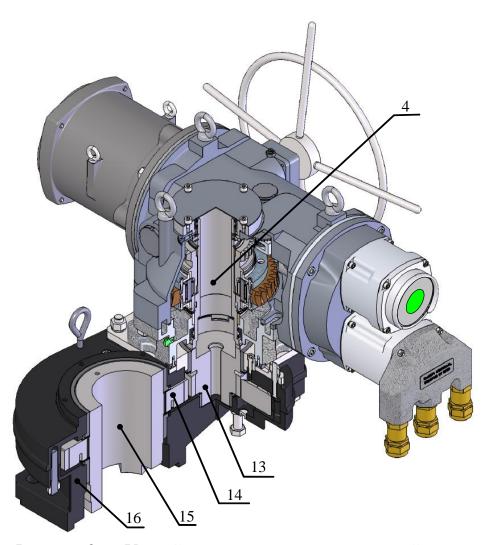


Рисунок 3д – Устройство привода конструктивной схемы 430

Модуль промежуточного редуктора (присутствует в некоторых исполнениях приводов конструктивных схем 41, 410, 43, 430, 44) имеет ряд исполнений, различающихся осевой длиной и типом фланца для присоединения электродвигателя 1. Длинное исполнение модуля имеет одноступенчатый планетарный редуктор с тремя сателлитами и тремя вариантами передаточного числа. Короткое исполнение модуля через муфту с механизмом выключения ручного дублера соединяет двигатель с валом червячного редуктора.

Модуль ручного дублера снабжен маховиком 10. Включение ручного дублера у приводов конструктивных схем 40, 41 и 410 осуществляется нажатием маховика. Во включенном состоянии маховик через кулачковую муфту соединен с червячным валом и обеспечивает вращение выходного вала вручную, двигатель отсоединен от червячного вала и удерживается в неподвижном состоянии. Отключение ручного дублера происходит автоматически с помощью толкателя при начале вращения электродвигателя привода в любом направлении. При включении электродвигателя исключается передача вращения на маховик ручного дублера. Для фиксации ручного дублера, в целях предотвращения его несанкционированного включения, он оснащен блокировочным винтом.

У приводов конструктивных схем 43, 430 и 44 ручной дублер связан с выходным валом привода через дифференциальный механизм, обеспечивающий как независимую работу привода от электродвигателя или ручного дублера, так и их совместное использование. У данных конструктивных схем включение ручного дублера не производится.

Модуль питания 12 содержит клеммную плату или штепсельный разъем для присоединения внешних цепей питания и управления привода. Внешние кабели соединяются с модулем питания:

- <u>взрывозащищенные приводы</u>: через герметизированные (взрывозащищенные) кабельные вводы, соответствующие требованиям взрывозащищенного исполнения по ГОСТ 31610.0-2014;
- <u>приводы общепромышленного исполнения</u>: через общепромышленные кабельные вводы или с помощью штепсельных разъемов без кабельных вводов.

Механический блок управления реализует набор функций, полный перечень которых представлен в п.1.1 «Назначение изделия». Конкретный набор функций из указанного перечня, реализуемый блоком управления, определяется вариантом его исполнения.

Механический блок управления может содержать (в зависимости от исполнения, см. таблица 1в) два или четыре путевых и два моментных выключателя, местный указатель положений, нагревательный потенциометрический или токовый датчики положений, сигнализатор движения, устройство блокировки сигнала превышения крутящего момента привода и устройство блокировки, предотвращающее повторный пуск привода направлении нарастающего момента вращения.

Выключатели допускают настройку на срабатывание при достижении соответственно величины пути, пройденного выходным валом, и величины

крутящего момента, развиваемого приводом, в пределах диапазона настройки, определяемого вариантом исполнения блока управления (таблица 1г).

Конструктивно механический блок управления состоит из следующих основных функциональных узлов (рисунок 4):

- Узел согласующего редуктора обеспечивает преобразование угловых перемещений выходного вала привода в угловые перемещения кулачкового вала узла путевых выключателей.
- Узел путевых выключателей предназначен для подачи команд управления при достижении выходным валом привода положений, заданных настройкой соответствующих кулачков. Представляет собой механизм преобразования вращения вала согласующего редуктора во вращение кулачков (каждый их которых воздействует на соответствующий микропереключатель) и во вращение потенциометра обратной связи (при наличии).
- Узел моментных выключателей предназначен для подачи команд управления при появлении на выходном валу привода крутящего момента, превышающего уровни настройки, заданные соответствующими кулачками. Представляет собой механизм преобразования вращения моментоизмерительного устройства привода во вращение двух кулачков, воздействующих на электромеханических выключателя два (микропереключателя). Каждый кулачок имеет фиксирующее шкалу 3a устройство. лицевой пластиной располагается блока управления кулачков дополнительный набор с широким выступом, которые использоваться для настройки моментных выключателей.
- Местный указатель положений предназначен для непосредственного наблюдения за положением выходного вала привода в диапазоне «открыто закрыто». Указатель выполнен в виде двух (прозрачного и непрозрачного) дисков с метками. Диски вращаются вместе с кулачковым валом узла путевых выключателей. В крайних положениях привода метки на дисках могут быть совмещены с неподвижной меткой на корпусе привода.
- Нагревательный резистор совместно с термовыключателем предназначены для создания внутри полости, в которой находится блок управления, условий, препятствующих конденсации влаги. При низкой окружающей температуре резистор на 2-3 °C подогревает воздух вокруг блока управления.
- Сигнализатор текущего положения выходного вала, исполненный в виде потенциометрического датчика, предназначен для определения положения выходного вала привода по значению падения напряжения на переменном резисторе.
- Сигнализатор текущего положения выходного вала, исполненный в виде токового датчика, также предназначен для определения положения выходного вала привода, но только по значению силы тока («токовая петля»). Конструктивно токовый датчик состоит из аналогично установленного переменного резистора номиналом 10 кОм и электронного преобразователя «напряжение-ток». Токовый датчик требует питания постоянным током 9...36 В; 0,3 А от внешнего источника.

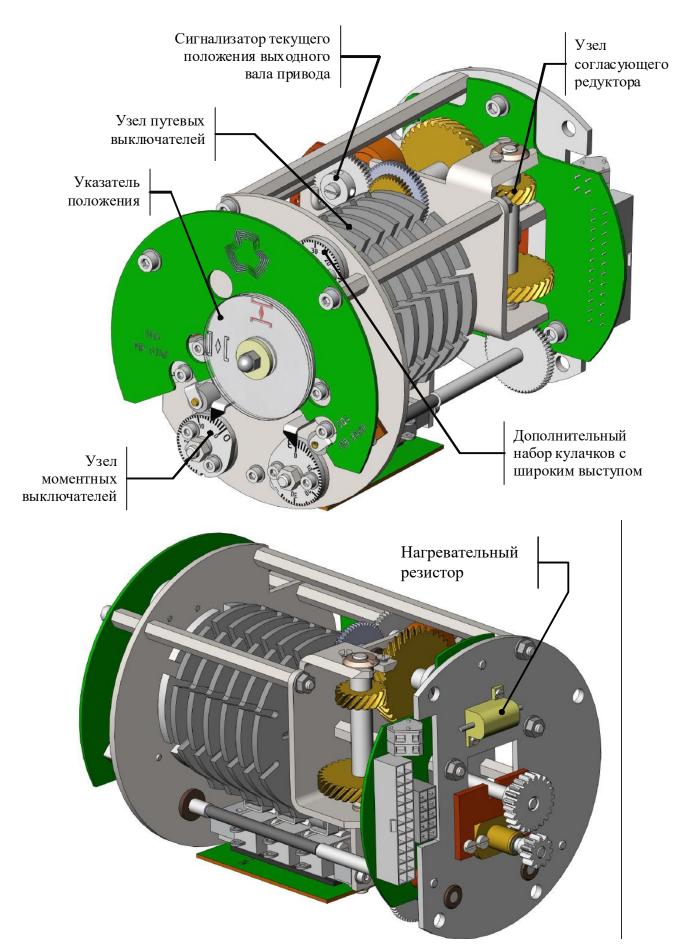


Рисунок 4 – Механический блок управления

- Сигнализатор вращения выходного вала (сигнализатор движения блинкер) предназначен для индикации факта вращения привода путем периодического замыкания сигнальной цепи. На входном валу согласующего редуктора установлен кулачок, вызывающий срабатывание микропереключателя при каждом обороте привода (сигнализатор на рисунке 4 не показан, устанавливается по отдельному заказу).
- Устройство блокировки сигнала превышения крутящего момента привода на участках срыва арматуры из закрытого или открытого положения игнорирования системой предназначено ДЛЯ управления срабатывания моментных выключателей, когда привод работает с заведомым расчетной нагрузки. Устройство представляет превышением дополнительные кулачок-микропереключатель пары узле путевых выключателей, которые позволяют реализовать данную логику управления по цепям моментных выключателей. Поворот кулачков блокировки позволяет менять ширину зоны нечувствительности к сигналам превышения крутящих моментов.
- Устройство блокировки, предотвращающее повторный пуск привода в направлении нарастающего момента вращения (устройство фиксации моментных выключателей), предназначено для исключения автоколебательного процесса, который может возникнуть из-за возврата контактов моментного микропереключателя в исходное состояние вследствие вибраций или потери жесткости системы «привод-арматура». Устройство представляет собой модуль на электромагнитных реле, «запоминающий» срабатывание моментных микропереключателей (блокиратор на рисунке 4 не показан, устанавливается по отдельному заказу).

Присоединительный фланец для установки на арматуру выполнен в соответствии с ГОСТ Р 55510-2013 (типы фланцев МК, АК, АЧ А, Б, В, Г, Д или типы фланцев F07, F10, F14, F16, F25, F30, F35, F40). В приводах с выходным редуктором (конструктивные схемы 410 и 430) нижняя часть корпуса редуктора 16 является присоединительным фланцем. Присоединительные размеры привода указаны в приложении В. Присоединительные размеры арматуры должны соответствовать требованиям для присоединительных фланцев из ряда МК, АК, АЧ, Б, В, Г, Д по ГОСТ Р 55510-2013, предъявляемым к ответному присоединению. Группа ведущих элементов для присоединительных фланцев из ряда F07...F40 по ГОСТ Р 55510-2013 оговаривается при заказе и указывается в паспорте привода. Отверстие под шпиндель арматуры - согласно таблице 3а.

1.4 Маркировка

Каждый привод снабжается паспортной табличкой, на которой представлены:

- товарный знак и (или) наименование предприятия -изготовителя;
- наименование и (или) условное обозначение привода;
- степень защиты по ГОСТ 14254-2015;
- крутящий момент, равный верхнему пределу настройки ограничителя крутящего момента, $H\cdot m$;
 - частота вращения выходного вала, об/мин;
 - число оборотов выходного вала, равное нижнему и верхнему пределам настройки путевых выключателей, об;
 - заводской номер привода;
 - диапазон температур окружающей среды, °C;
 - масса привода, кг;
 - год выпуска;
 - напряжение электропитания, В;
 - частота электропитания, Гц;
 - мощность двигателя, кВт;
- надпись "Сделано в России" (только на табличках приводов, предназначенных для экспорта).

На корпусе привода взрывозащищенного исполнения нанесена маркировка взрывозащиты, знак взрывозащищенности по TP TC 012/2011 и предупредительные надписи, соответствующие требованиям ГОСТ 31610.0-2014.

На каждый привод нанесен "Единый знак обращения продукции".

2 Использование по назначению

2.1 Эксплуатационные ограничения и меры безопасности

2.1.1 Общие требования безопасности

К работам по монтажу, демонтажу, регулировке, пуску приводов, к их эксплуатации и техническому обслуживанию может быть допущен персонал, изучивший настоящее руководство, получивший соответствующий инструктаж по технике безопасности, имеющий специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 В.

При работе с приводами должны соблюдаться следующие правила:

- эксплуатация и обслуживание приводов должна осуществляться с соблюдением настоящего РЭ, а также действующих «Правил эксплуатации электроустановок потребителей», «Правил техники безопасности при эксплуатации электроустановок потребителей» и «Правил устройства электроустановок»;
- работы по монтажу, демонтажу и обслуживанию приводов следует производить при отключенном электропитании и вывешенной на пульте управления приводом табличке с надписью «НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ»;
- корпус привода должен быть надежно заземлен, заземляющий провод следует присоединить к винту «Земля» на корпусе привода;
- работа с приводами должна производиться только исправным инструментом.

Организация погрузочно-разгрузочных работ приводов должна соответствовать требованиям ГОСТ 12.3.009–76.

2.1.2 Обеспечение взрывозащищенности и общие требования к монтажу

Информация по обеспечению взрывозащищенности относится к приводам со взрывозащищенным исполнением

Взрывозащищенность приводов достигается за счет:

заключения токоведущих частей в отделения оболочки с щелевой взрывозащитой в местах сопряжения деталей и узлов, способных выдержать давление взрыва исключающие передачу взрыва окружающую И В взрывоопасную среду, подтверждается результатами испытаний. ЧТО Взрывоустойчивость проверяется приводов при изготовлении путем гидравлических испытаний корпусных деталей, после чего на деталях, прошедших испытания, ставится клеймо «ГИ» — гидроиспытано, что соответствует требованиям ГОСТ IEC 60079-1-2013;

- б) ограничения температуры нагрева наружных частей приводов (не более 135 °C), что подтверждено результатами испытаний;
- в) уплотнения кабелей в кабельных вводах специальными резиновыми кольцами по ГОСТ IEC 60079-1-2013;
- г) предохранения от самоотвинчивания всех болтов, крепящих деталей, обеспечивающих взрывозащиту, а также токоведущих и заземляющих зажимов с помощью пружинных шайб или контргаек;
- д) высокой механической прочности приводов, что подтверждается результатами испытаний;
- е) наличия предупредительной надписи на крышке вводного отделения и блока управления приводов «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ!»;
- ж) защиты от коррозии консистентной смазкой всех поверхностей, обозначенных словом «ВЗРЫВ».

При монтаже изделия необходимо руководствоваться инструкциями по монтажу и эксплуатации электрооборудования взрывоопасных установок.

Перед монтажом изделие должно быть осмотрено. При этом необходимо обратить внимание на:

- знак взрывозащиты и предупредительной надписи;
- отсутствие повреждений оболочки;
- наличие всех крепежных элементов (болтов, гаек, шайб);
- наличие средств уплотнения (для кабелей);
- наличие заземляющих устройств;
- наличие заглушек в неиспользуемых вводных устройствах.

При монтаже необходимо проверить состояние взрывозащитных поверхностей деталей, подвергаемых разборке (царапины, трещины, вмятины и другие дефекты не допускаются), возобновить на них антикоррозийную смазку.

Все крепежные болты должны быть затянуты, съемные детали должны плотно прилегать к корпусу оболочки. Детали с резьбовым креплением должны быть завинчены на всю длину резьбы и застопорены.

При монтаже привода следует обратить внимание на то, что наружные диаметры подключаемых кабелей должны соответствовать размерам уплотнений кабельных вводов (оговаривается при заказе и указывается в паспорте привода), а также диаметру проходного отверстия в прижиме кабельного ввода (рисунок 7).

Уплотнение кабеля должно быть выполнено самым тщательным образом, так как от этого зависит взрывонепроницаемость вводного устройства. Применение уплотнительных колец (прокладок), изготовленных на месте монтажа с отступлением от рабочих чертежей завода-изготовителя, не допускается. Как правило, должны применяться кольца завода-изготовителя изделия.

Изделие должно быть заземлено как с помощью внутреннего, так и наружного заземляющего зажима. Место присоединения наружного заземляющего проводника должно быть тщательно зачищено и предохранено после присоединения заземляющего проводника от коррозии путем нанесения слоя консистентной смазки. Снимавшиеся при монтаже крышки и другие детали должны быть установлены на местах, при этом следует обратить внимание на наличие всех крепежных элементов и их затяжку.

В период эксплуатации необходимо следить за целостью лакокрасочного покрытия.

2.2. Подготовка изделия к использованию

2.2.1 Распаковка и расконсервация

При распаковке привода проверьте:

- комплектность поставки в соответствии с упаковочным листом;
- отсутствие видимых повреждений привода;
- наличие и состояние эксплуатационной документации.

Наружные неокрашенные поверхности приводов подвергнуты консервации. Консервация приводов производилась в соответствии с требованиями раздела 10 ГОСТ 9.014-78. В качестве консервационной смазки используется либо смазка НГ-222 АФ ТУ38.401-58-215-98 (вариант защиты ВЗ-8), либо смазка ЛИТОЛ-24 ГОСТ 21150-2017 (вариант защиты ВЗ-4).

Работы по расконсервации должны производиться в соответствии с требованиями ГОСТ 9.014-78.

Расконсервацию привода следует проводить непосредственно перед установкой его на арматуру. Расконсервированный привод должен быть установлен на арматуре и электрически подключен. Невыполнение данных требований приводит к потере гарантии на привод.

2.2.2 Монтаж привода на арматуру

К монтажу привода допускается персонал, соответствующий требованиям п. 2.1 «Эксплуатационные ограничения и меры безопасности» настоящего РЭ.

Перед монтажом привода необходимо проверить:

- отсутствие видимых повреждений привода;
- соответствие присоединительных размеров привода и арматуры (см. приложение В);
- возможность перемещения выходного вала привода при работе от ручного дублера (см. п.2.3.1 «<u>Работа с помощью ручного дублера</u>»).

Выявленные в процессе проверки поврежденные детали и элементы должны быть заменены.

Наиболее просто монтаж привода выполняется при вертикальном расположении арматуры. Монтаж может выполняться и при другом расположении арматуры.

Для установки привода на арматуру необходимо осуществить следующие действия:

- а) тщательно очистите сопрягаемые поверхности привода и арматуры;
- б) нанесите небольшое количество смазки на вал арматуры;
- в) поднимите привод за рым-болты. Для приводов конструктивной схемы 41 необходимо предварительно установить рым-болты, которые входят в комплект поставки привода. Рым-болты ввинчивают в резьбовые отверстия в корпусе привода (для приводов конструктивных схем 40, 41, 410 резьбовые отверстия М8, для приводов конструктивных схем 43, 430 резьбовые отверстия М14). Схемы строповки приводов приведены на рисунках 5а, 5б, 5в, 5г, 5д;

Не поднимайте привод за маховик ручного дублера и рым-болты, установленные на двигателе привода. Привод в сборе с арматурой (или иным оборудованием) поднимайте только в строгом соответствии с требованиями руководства по эксплуатации на арматуру (или иное оборудование).

- г) установите привод вертикально на валу арматуры так, чтобы совпали кулачки вала арматуры с соответствующими пазами выходного вала привода (если необходимо, сопряжение провести с помощью ручного дублера);
 - д) закрепите привод на арматуре с помощью болтов;
- е) проверьте возможность перемещения выходного вала привода при работе от ручного дублера;
 - ж) окончательно затяните болты.

После монтажа проведите электрическое подключение привода.

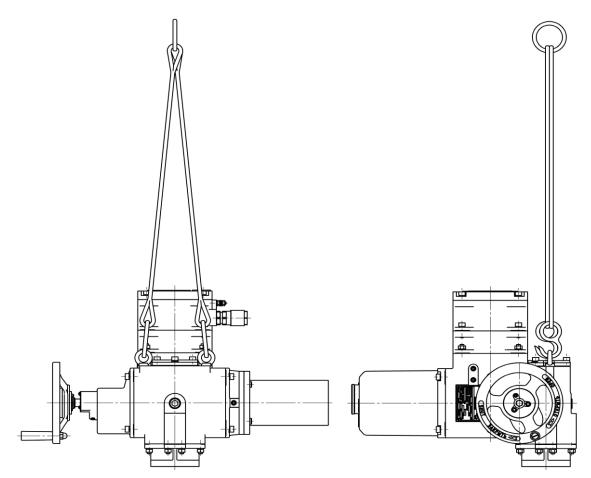


Рисунок 5а – Схема строповки привода конструктивной схемы 40

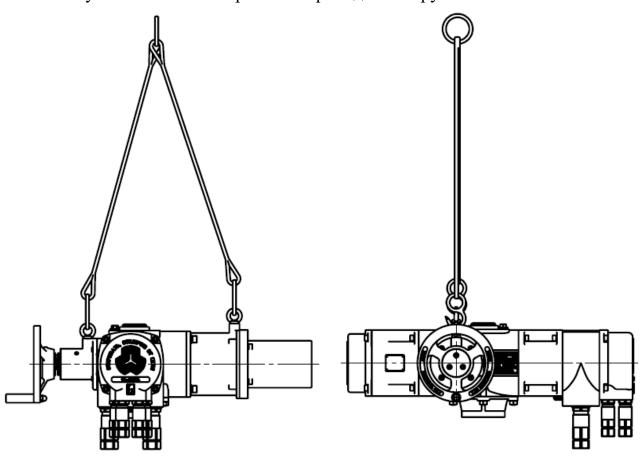


Рисунок 5б – Схема строповки привода конструктивной схемы 41

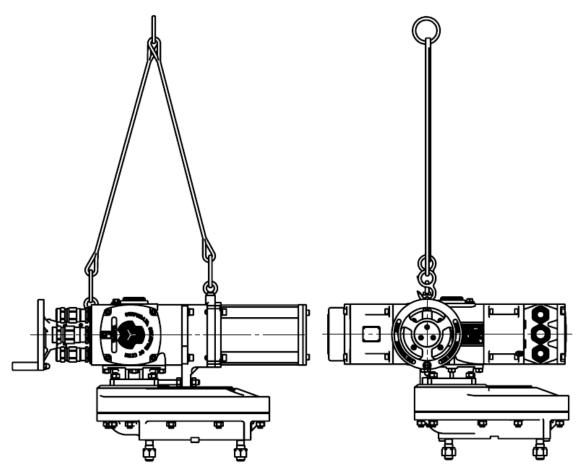


Рисунок 5в – Схема строповки привода конструктивной схемы 410

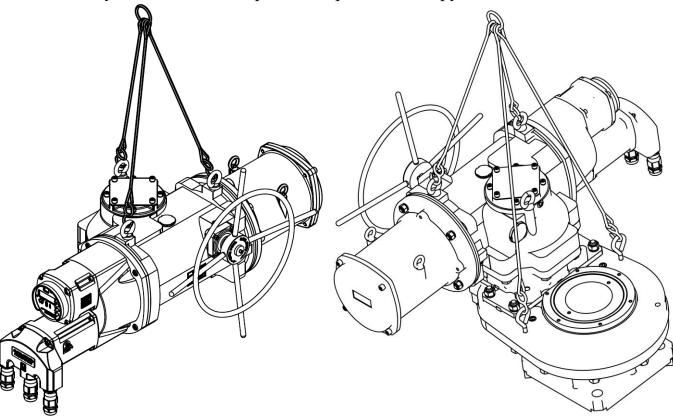


Рисунок 5г – Схема строповки привода конструктивной схемы 43

Рисунок 5д — Схема строповки привода конструктивной схемы 430

2.2.3 Электрическое подключение

К электрическому подключению привода допускается персонал, соответствующий требованиям п. 2.1 «Эксплуатационные ограничения и меры безопасности» настоящего РЭ.

Защитные устройства, такие как автоматические выключатели или плавкие предохранители, должны быть установлены в линиях подвода электропитания к приводу для того, чтобы обеспечить их защиту на случай возникновения перегрузки двигателя привода или нарушения изоляции его электрических цепей.

Перед подключением удалите пакеты с силикагелем из блока управления. Для получения доступа к блоку, необходимо открутить четыре торцевых винта и снять с блока управления корпус (см. п. 2.4 "Настройка механического блока управления").

Перед подключением, проверьте соответствие напряжения в сети электропитания, к которой подключается привод, данным, указанным на его паспортной табличке.

Электрическое подключение привода осуществляется в соответствии со схемами, представленными на рисунках A.1-A.7 в <u>приложении A</u>, стр. 88.

Привод с механическим блоком управления серии М1 НЕ ОСНАЩЕН пускателями электродвигателя.

Диаметры подключаемых кабелей и брони должны соответствовать диаметрам, указанным в паспорте привода.

- 2.2.3.1 Подключение привода с кабельными вводами с клеммным подключением производится в следующей последовательности:
- а) при помощи торцевого ключа открутите четыре винта крепления крышки модуля питания (рисунок 6а) и снимите ее;

Снятие любых других крышек привода без согласования с поставщиком привода приводит к тому, что гарантия теряет силу. Поставщик не несет ответственности за какие-либо повреждения или ухудшение работы, которые могут последовать из-за этого.

б) рекомендуется проверить сопротивление изоляции электрических цепей привода в соответствии с приложением $\overline{\mathbf{b}}$;

В случае поставки привода без кабельных вводов, а только с резьбовыми отверстиями под них, перед электрическим подключением необходимо извлечь пробки из резьбовых отверстий и установить кабельные вводы соответствующие исполнению привода по взрывозащите, степени защиты от проникновения пыли и воды и варианту температурного исполнения.

При установке кабельных вводов, для обеспечения степени защиты от проникновения пыли и воды IP67 и IP68 по ГОСТ 14254-2015 необходимо использовать герметик для резьбовых соединений.

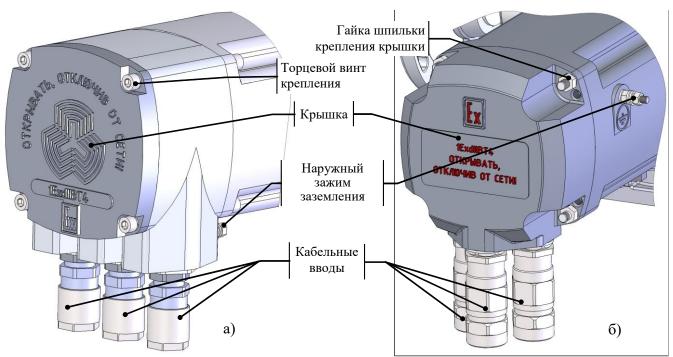
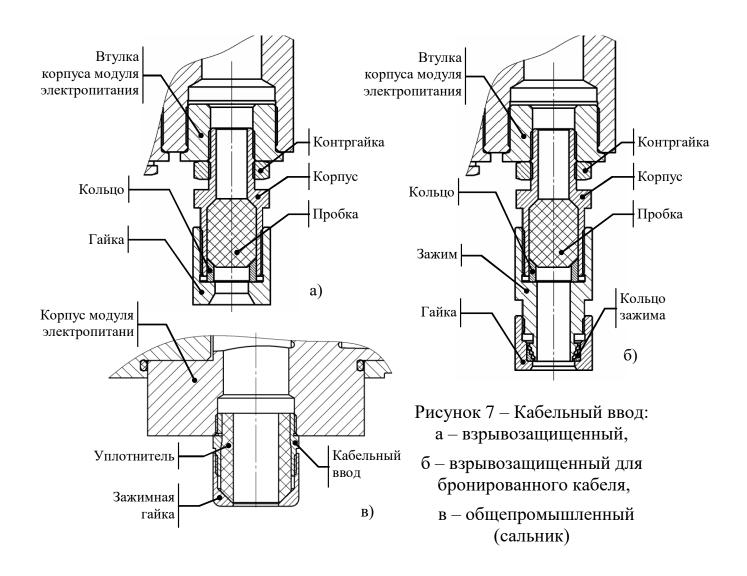



Рисунок 6 – Модуль питания привода с кабельными вводами: а – с клеммным подключением, б – со штепсельным подключением

в) для привода со взрывозащищенными кабельными вводами (рисунок 7a): отвинтите гайку с корпуса кабельного ввода и извлеките из кабельного ввода кольцо и пробку;

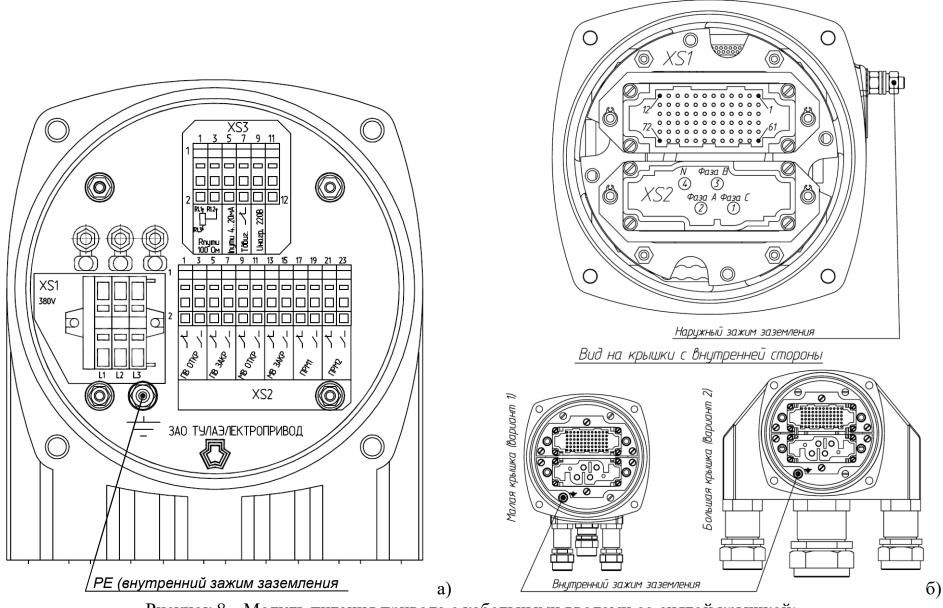
для привода со взрывозащищенными кабельными вводами для бронированного кабеля (рисунок 76): отвинтите зажим с корпуса кабельного ввода и гайку с зажима, а затем извлеките из кабельного ввода кольцо, пробку и кольцо зажима;

для привода с общепромышленными кабельными вводами (рисунок 7в): отвинтите зажимную гайку с кабельного ввода и извлеките из него заглушку и уплотнитель;

г) для привода со взрывозащищенными кабельными вводами: пропустите подключаемый кабель последовательно через гайку, кольцо и уплотнительное резиновое кольцо, входящее в комплект поставки;

для привода со взрывозащищенными кабельными вводами для бронированного кабеля: пропустите подключаемый кабель последовательно через гайку, кольцо зажима, зажим, кольцо и уплотнительное резиновое кольцо, входящее в комплект поставки;

для привода с общепромышленными кабельными вводами: пропустите подключаемый кабель сначала через зажимную гайку, а затем через уплотнитель;


- д) пропустите подключаемые кабели через кабельные вводы (один кабель в один кабельный ввод). Рекомендуется (для удобства) подключать силовые цепи через левый кабельный ввод, а цепи управления и сигнализации через правый и средний кабельные вводы;
- е) подключите концы проводов к соответствующим контактам клеммного разъема (рисунок 8а, таблица 5);
- ж) для привода со взрывозащищенными кабельными вводами: затяните гайку на корпусе кабельного ввода до обеспечения плотного прилегания уплотнительного кольца к кабелю;

для привода со взрывозащищенными кабельными вводами для бронированного кабеля:

- 1) затяните зажим на корпусе кабельного ввода до обеспечения плотного прилегания уплотнительного кольца к кабелю;
- 2) затяните гайку на зажиме кабельного ввода до обеспечения плотного прилегания зажима к кабелю, при этом кольцо зажима должно прижимать броню кабеля к внешней конической поверхности зажима;

для привода с общепромышленными кабельными вводами: затяните зажимную гайку кабельного ввода до обеспечения плотного прилегания уплотнителя к кабелю;

- и) неиспользуемые кабельные вводы закройте заглушками;
- к) подключите заземление;
- л) установите крышку модуля питания и затяните ее четырьмя винтами. Для приводов со степенью защиты IP68 по ГОСТ 14254-2015 рекомендуется перед установкой крышки удалить остатки герметика и нанести новый в места прилегания крышки модуля питания и корпуса привода.

Вид на электропривод со снятой крышкой

Рисунок 8 – Модуль питания привода с кабельными вводами со снятой крышкой: а – с клеммным подключением; б – со штепсельным подключением

- 2.2.3.2 Подключение привода с кабельными вводами со штепсельным подключением производится в следующей последовательности:
- а) открутите четыре гайки со шпилек крепления крышки модуля питания (рисунок 6б) и снимите ее;

Снятие любых других крышек привода без согласования с поставщиком привода приводит к тому, что гарантия теряет силу. Поставщик не несет ответственности за какие-либо повреждения или ухудшение работы, которые могут последовать из-за этого.

б) рекомендуется проверить сопротивление изоляции электрических цепей привода в соответствии с приложением Б;

В случае поставки привода без кабельных вводов, а только с резьбовыми отверстиями под них, перед электрическим подключением необходимо извлечь пробки из резьбовых отверстий и установить кабельные вводы соответствующие исполнению привода по взрывозащите, степени защиты от проникновения пыли и воды и варианту температурного исполнения.

При установке кабельных вводов, для обеспечения степени защиты от проникновения пыли и воды IP67 и IP68 по ГОСТ 14254-2015 необходимо использовать герметик для резьбовых соединений.

в) для привода со взрывозащищенными кабельными вводами (рисунок 7a): отвинтите гайку с корпуса кабельного ввода и извлеките из кабельного ввода кольцо и пробку;

для привода со взрывозащищенными кабельными вводами для бронированного кабеля (рисунок 7б): отвинтите зажим с корпуса кабельного ввода и гайку с зажима, а затем извлеките из кабельного ввода кольцо, пробку и кольцо зажима;

для привода с общепромышленными кабельными вводами (рисунок 7в): отвинтите зажимную гайку с кабельного ввода и извлеките из него заглушку и уплотнитель;

г) для привода со взрывозащищенными кабельными вводами: пропустите подключаемый кабель последовательно через гайку, кольцо и уплотнительное резиновое кольцо, входящее в комплект поставки;

для привода со взрывозащищенными кабельными вводами для бронированного кабеля: пропустите подключаемый кабель последовательно через гайку, кольцо зажима, зажим, кольцо и уплотнительное резиновое кольцо, входящее в комплект поставки;

для привода с общепромышленными кабельными вводами: пропустите подключаемый кабель сначала через зажимную гайку, а затем через уплотнитель;

- д) пропустите подключаемые кабели через кабельные вводы (один кабель в один кабельный ввод);
- е) подключите концы проводов к соответствующим контактам снятой крышки модуля питания (рисунок 8б, таблица 6):
- 1) силовой кабель подключите к соответствующим винтовым контактам разъема XS2;

2) зачистите проводники информационных кабелей, обожмите на них контакты, входящие в комплект поставки электропривода, и установите их в соответствующие гнезда разъема XS1. Электропривод комплектуется контактами, рассчитанными на обжим проводников сечением от 0,5 мм² (КГ-10-0,5 производства НПО"Каскад" или 09 15 000 6203 производства "Harting"). Поставка контактов Harting под иные сечения должна оговариваться отдельно при заказе с учетом данных нижеприведенной таблицы:

Сечение проводника	Контакты гнездовые	Контакты гнездовые
кабеля, mm^2	НПО"Каскад"	"Harting"
0,14 - 0,37	КГ-10-0,35	09 15 000 6204
0,5	КГ-10-0,5	09 15 000 6203
0,75	КГ-10-0,75	09 15 000 6205
1,0	КГ-10-1	09 15 000 6202
1,5	КГ-10-1,5	09 15 000 6201
2,5	КГ-10-2,5	09 15 000 6206

Комплект контактов (в пакете) размещается внутри крышки модуля питания. Для доступа к пакету с контактами, необходимо отвинтить четыре винта М5 на крышке модуля питания и снять пластину с разъемами.

Обжим контактов производить при помощи специализированных клещей производства "Harting" (09 99 000 0021). Установку контактов в корпус разъема производить при помощи специализированного установочного инструмента производства "Harting" (09 99 000 0059). Извлечение контактов из корпуса разъема при их ошибочной установке производить при помощи специализированного извлекающего инструмента производства "Harting" (09 99 000 0021).

Вышеуказанные инструменты не входят в комплект поставки электропривода. Поставка инструмента должна быть оговорена отдельно при заказе.

ж) для привода со взрывозащищенными кабельными вводами: затяните гайку на корпусе кабельного ввода до обеспечения плотного прилегания уплотнительного кольца к кабелю;

для привода со взрывозащищенными кабельными вводами для бронированного кабеля:

- 1) затяните зажим на корпусе кабельного ввода до обеспечения плотного прилегания уплотнительного кольца к кабелю;
- 2) затяните гайку на зажиме кабельного ввода до обеспечения плотного прилегания зажима к кабелю, при этом кольцо зажима должно прижимать броню кабеля к внешней конической поверхности зажима;

для привода с общепромышленными кабельными вводами: затяните зажимную гайку кабельного ввода до обеспечения плотного прилегания уплотнителя к кабелю;

- и) неиспользуемые кабельные вводы закройте заглушками;
- к) подключите заземление;
- л) установите крышку модуля питания и затяните ее четырьмя гайками шпилек. Для приводов со степенью защиты IP68 по ГОСТ 14254-2015 рекомендуется перед установкой крышки удалить остатки герметика и нанести новый в места прилегания крышки модуля питания и корпуса привода.

- 2.2.3.3 Подключение привода без кабельных вводов со штепсельным подключением производится в следующей последовательности:
- а) рекомендуется проверить сопротивление изоляции электрических цепей привода в соответствии с приложением Б;
- б) подготовьте (разберите) ответные части штепсельных разъемов кабельные розетки (входят в комплект поставки привода) к подключению проводников кабелей;
- в) подключите (припаяйте) заранее подготовленные концы проводников кабелей к соответствующим контактам кабельных розеток (таблица 7);
- г) соберите и подключите кабельные розетки к соответствующим вилкам на приводе (рисунок 9);
 - д) подключите заземление.

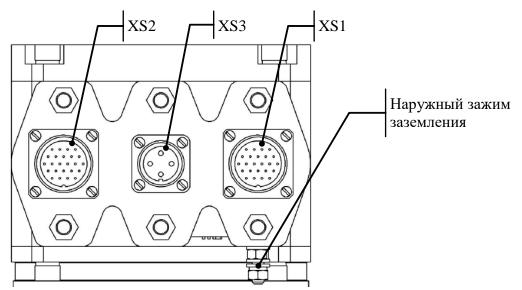


Рисунок 9 — Расположение разъемов на модуле питания привода со штепсельным подключением без кабельных вводов (вид снизу)

После электрического подключения необходимо проверить:

- работу привода от ручного дублера (см. п.2.3.1 "Работа с помощью ручного дублера", стр. 67);
- работу привода от электродвигателя, для чего необходимо осуществить пробный пуск привода (см. п.2.5 "Пробный пуск", стр. 82).

Пуск осуществлять на короткое время, позволяющее определить направление движения.

После электрического подключения привода, должен быть включен антиконденсатный подогрев блока управления привода (подано напряжение 220 В на обогревательный элемент). Невыполнение данного требования приводит к потере гарантии на привод.

Таблица 5 — Назначение контактов с клеммным подключением через кабельные вводы

Тиолици	Назначение контактов с клеммным		cs Raoc	льные вводы	
	Разъем XS				
№ контакта	Назначение				
1	Фаза А электрической сети переменного тока 380 B (660 B ¹⁾)				
2	Фаза В электрической сети переменного тока 380 В (660 В 1)				
3 Фаза С электрической сети переменного тока 380 B (660 B ¹⁾)					
	Разъем ХЅ				
№ контакта	На	азначение			
1	Выдача сигнала о текущем положении выходного вала			Контакт «R1.1»	
2	привода с потенциометрического датчика положения		Контакт «R1.3»		
3	привода с потенциометрического датчика положения			Контакт «R1.2»	
4	Не и	спользуется			
5	Выдача сигнала о текущем положен		Контакт «420 мА»		
6	привода через интерфейс «токовая г	тетля» 420 мА	Контакт «420 мА		
7	Выдача сигнала с датчика температ	Vni iruratena	Контакт «1»		
8		_	Контакт «2»		
9	Подача напряжения 220 В на антико	онденсатный	-	кт «1»	
10	обогревательный элемент			кт «2»	
11	<u> </u>			кт «1»	
12	привода (блинкер, опция по заказу)			акт «2»	
	Разъем ХЅ				
3.0	(при четырехконтактных				
№ контакта	Ha	азначение		TC 1	
1	I.C.	Нормально замкнутые контакты Нормально разомкнутые		Контакт 1	
2	Контакты концевого выключателя			Контакт 2	
3	положения «Открыто» SQ1			Контакт 1	
5		КОНТАКТЫ		Контакт 2	
	V average v vasyvan and ny vystavana v v	Нормально замкнутые контакты Нормально разомкнутые		Контакт 1 Контакт 2	
<u>6</u> 7	Контакты концевого выключателя			Контакт 2	
8	положения «Закрыто» SQ2			Контакт 1	
9			контакты		
10	Контакты моментного	Нормально замкнут контакты	ыс	Контакт 1 Контакт 2	
11	— выключателя SQ3 при движении в	Нормально разомкнутые		Контакт 2	
12	сторону открывания арматуры	контакты	тутыс	Контакт 2	
13		Нормально замкнутые		Контакт 2	
14	Контакты моментного	контакты Нормально разомкнутые		Контакт 2	
15	выключателя SQ4 при движении в			Контакт 1	
16	сторону закрывания арматуры пормально разомк		- ,	Контакт 2	
17		Нормально замкнутые контакты Нормально разомкнутые		Контакт 1	
18	Контакты первого			Контакт 2	
19	промежуточного путевого			Контакт 1	
20	выключателя S1	контакты	<i>J</i>	Контакт 2	
21	10	Нормально замкнут	тые	Контакт 1	
∠ 1	- I/ OXYMOVERY I DECOMODES				
22	Контакты второго	контакты		Контакт 2	
	промежуточного путевого выключателя S2	контакты Нормально разомки	нутые	Контакт 2 Контакт 1	

Продолжение таблицы 5

	Разъем Х	S2		
	(при трехконтактных і	выключателях)		
№ контакта	Назначение			
1		Общий		
2	Контакты концевого выключателя	Нормально замкнутый контакт		
3	положения «Открыто» SQ1	Нормально разомкнутый контакт		
4		Не используется		
5		Общий		
6	Контакты концевого выключателя	Нормально замкнутый контакт		
7	положения «Закрыто» SQ2	Нормально разомкнутый контакт		
8		Не используется		
9	Контакты моментного выключателя	Общий		
10	SQ3 при движении в сторону	Нормально замкнутый контакт		
11	открывания арматуры	Нормально разомкнутый контакт		
12		Не используется		
13	Контакты моментного выключателя	Общий		
14	SQ4 при движении в сторону	Нормально замкнутый контакт		
15	закрывания арматуры	Нормально разомкнутый контакт		
16	закрывання арматуры	Не используется		
17		Общий		
18	Контакты первого промежуточного	Нормально замкнутый контакт		
19	путевого выключателя S1	Нормально разомкнутый контакт		
20		Не используется		
21		Общий		
22	Контакты второго промежуточного	Нормально замкнутый контакт		
23	путевого выключателя S2	Нормально разомкнутый контакт		
24		Не используется		
оимечание:	•			

1 для приводов высоковольтного исполнения.

Таблица 6 — Назначение контактов со штепсельным подключением через кабельные вводы

Разъем XS1				
	(при четырехконтактных выключателях)			
№ контакта	Назн	начение		
1		Нормально замкнутые	Контакт 1	
2	Контакты концевого выключателя	контакты	Контакт 2	
3	положения «Открыто» SQ1	Нормально разомкнутые	Контакт 1	
4		контакты	Контакт 2	
5		Нормально замкнутые	Контакт 1	
6	Контакты концевого выключателя	контакты	Контакт 2	
7	положения «Закрыто» SQ2	Нормально разомкнутые	Контакт 1	
8		контакты	Контакт 2	
9	KONTOKTI I MOMONTHOFO DI IKHIONOTORI SOS	Нормально замкнутые	Контакт 1	
10	Контакты моментного выключателя SQ3 при движении в сторону открывания арматуры	контакты	Контакт 2	
11		Нормально разомкнутые	Контакт 1	
12	ирмитуры	контакты	Контакт 2	
13	Контакты моментного выключателя SQ4	Нормально замкнутые	Контакт 1	
14	при движении в сторону закрывания	контакты	Контакт 2	
15	арматуры	Нормально разомкнутые	Контакт 1	
16	ирмитуры	контакты	Контакт 2	
17		Нормально замкнутые	Контакт 1	
18	Контакты первого промежуточного	контакты	Контакт 2	
19	путевого выключателя S1	Нормально разомкнутые	Контакт 1	
20		контакты	Контакт 2	
21		Нормально замкнутые	Контакт 1	
22	Контакты второго промежуточного	контакты	Контакт 2	
23	путевого выключателя S2	Нормально разомкнутые	Контакт 1	
24		контакты	Контакт 2	

Продолжение таблицы 6

-	Разъем XS1			
	(при трехконтактных вы	ключателях)		
№ контакта	Назначение			
1		Общий		
2	Контакты концевого выключателя	Нормально замкнутый контакт		
3	положения «Открыто» SQ1	Нормально разомкнутый контакт		
4		Не используется		
5		Общий		
6	Контакты концевого выключателя	Нормально замкнутый контакт		
7	положения «Закрыто» SQ2	Нормально разомкнутый контакт		
8		Не используется		
9	Контакты моментного выключателя	Общий		
10	SQ3 при движении в сторону	Нормально замкнутый контакт		
11	открывания арматуры	Нормально разомкнутый контакт		
12	ornpatania apmarypa	Не используется		
13	Контакты моментного выключателя	Общий		
14	SQ4 при движении в сторону	Нормально замкнутый контакт		
15	закрывания арматуры	Нормально разомкнутый контакт		
16	Suitp Bibuilini up muriyp Bi	Не используется		
17		Общий		
18	Контакты первого промежуточного	Нормально замкнутый контакт		
19	путевого выключателя S1	Нормально разомкнутый контакт		
20		Не используется		
21		Общий		
22	Контакты второго промежуточного	Нормально замкнутый контакт		
23	путевого выключателя S2	Нормально разомкнутый контакт		
24		Не используется		
	Разъем XS1			
	(при четырех- и трехконтактны	,		
№ контакта	Назна	ачение		
25	Выдача сигнала с датчика температуры	лвигателя Контакт «1»		
26	1 11	Контакт «2»		
27	Выдача сигнала о факте вращения выхо			
28	привода (блинкер, опция по заказу)	Контакт «2»		
33	Выдача сигнала о текущем положении и	выходного вала Контакт «R1.2»		
34	привода с потенциометрического датчи	ка положения Контакт «К1.1»		
36	1	Контакт «К1.3»		
37	Выдача сигнала о текущем положении в			
38	привода через интерфейс «токовая петл			
71	Подача напряжения 220 В на антиконде			
72	обогревательный элемент	Контакт «2»		
	Разъем XS2	200 D (550 = D)		
1	Фаза А электрической сети переменно			
2	Фаза В электрической сети переменного тока 380 B (660 B ¹)			
3	Фаза С электрической сети переменно	го тока 380 B (660 B ¹⁾)		
Примечание:				

Таблица 7 — Назначение контактов со штепсельным подключением без кабельных вводов

Назначение контактов со штепсельным		ыных вводов		
Разъем XS1				
	,			
Назначение				
	Нормально замкнутые	Контакт 1		
Контакты концевого выключателя	контакты	Контакт 2		
положения «Открыто» SQ1	Нормально разомкнутые	Контакт 1		
	контакты	Контакт 2		
	Нормально замкнутые	Контакт 1		
Контакты концевого выключателя	контакты	Контакт 2		
положения «Закрыто» SQ2	Нормально разомкнутые	Контакт 1		
	контакты	Контакт 2		
V average v valvavena prvince prvince and	Нормально замкнутые	Контакт 1		
	контакты	Контакт 2		
	Нормально разомкнутые	Контакт 1		
открывания арматуры	контакты	Контакт 2		
V CANTONIAN A VOLVOVINA DA NAMA NATORIO	Нормально замкнутые	Контакт 1		
	контакты	Контакт 2		
	Нормально разомкнутые	Контакт 1		
- закрывания арматуры 	контакты	Контакт 2		
	Нормально замкнутые	Контакт 1		
Контакты первого промежуточного	контакты	Контакт 2		
путевого выключателя S1	Нормально разомкнутые	Контакт 1		
	контакты	Контакт 2		
	Нормально замкнутые	Контакт 1		
Контакты второго промежуточного	контакты	Контакт 2		
путевого выключателя S2	Нормально разомкнутые	Контакт 1		
	контакты	Контакт 2		
Разъем XS1				
(при трехконтактных вь	іключателях)			
Назі	начение			
	Общий			
Контакты концевого выключателя	Нормально замкнутый	замкнутый контакт		
положения «Открыто» SQ1	Нормально разомкнуты	ій контакт		
	Не используется			
	Общий	Общий		
Контакты концевого выключателя	Нормально замкнутый	Нормально замкнутый контакт		
положения «Закрыто» SQ2	Нормально разомкнутый контакт			
	Не используется			
VOLUTARENT I MONOMENTO DE PRESENTA DE LA CONTRACTOR DE LA	Общий			
	Нормально замкнутый контакт			
	Нормально разомкнутый контакт			
открывания арматуры	Не используется			
Voyagagay	Общий			
	Нормально замкнутый	Нормально замкнутый контакт		
	Нормально разомкнутый контакт			
закрывания арматуры	1 1			
	При четырехконтактных Наза Контакты концевого выключателя положения «Открыто» SQ1 Контакты концевого выключателя положения «Закрыто» SQ2 Контакты моментного выключателя SQ3 при движении в сторону открывания арматуры Контакты моментного выключателя SQ4 при движении в сторону закрывания арматуры Контакты первого промежуточного путевого выключателя S1 Контакты второго промежуточного путевого выключателя S2 Разъем XS1 (при трехконтактных вы Наза Контакты концевого выключателя положения «Открыто» SQ1 Контакты концевого выключателя	Назначение		

Продолжение таблицы 7

•	Разъем XS1			
	(при трехконтактных выкл	ючателях		
№ контакта	Назначение			
17	Общий			
18	Контакты первого промежуточного		но замкнутый контакт	
19	путевого выключателя S1		но разомкнутый контакт	
20		Не испол	ьзуется	
21		Общий		
22	Контакты второго промежуточного		ю замкнутый контакт	
23	путевого выключателя S2		но разомкнутый контакт	
24		Не испол	ьзуется	
Разъем XS2				
№ контакта	Назначение			
1	Выдача сигнала о текущем положении выходного		Контакт «R1.1»	
2	•	вала привода с потенциометрического датчика		
3	положения		Контакт «R1.2»	
4	Выдача сигнала о текущем положении вых		Контакт «420 мА»	
5	вала привода через интерфейс «токовая петля» 420 мА		Контакт «420 мА»	
6	Выдача сигнала с датчика температуры двигателя		Контакт «1»	
7			Контакт «2»	
8	Подача напряжения 220 В на антиконденсатный		Контакт «1»	
9	обогревательный элемент		Контакт «2»	
23	Выдача сигнала о факте вращения выходного вала		Контакт «1»	
24	привода (блинкер, опция по заказу)		Контакт «2»	
	Разъем XS3			
№ контакта	Назначение			
1	Фаза А электрической сети переменного тока $380 \text{ B } (660 \text{ B}^{1})$			
2	Фаза В электрической сети переменного тока 380 В (660 В ¹⁾)			
3	Фаза С электрической сети переменного тока $380 \text{ B} (660 \text{ B}^{1})$			
Примечание: 1 Для приводог	в высоковольтного исполнения.			

2.3 Эксплуатация привода

Работа с приводом возможна посредством использования:

- ручного дублера (см. п.2.3.1 «<u>Работа с помощью ручного дублера</u>»);
- электродвигателя.

2.3.1 Работа с помощью ручного дублера

Выходное звено привода можно перемещать вручную, вращая маховик ручного дублера.

Работа с помощью ручного дублера возможна только при выключенном электродвигателе. НЕДОПУСТИМО пытаться включить ручной дублер путем нажима и принудительного удержания силой нажатой кнопки включения. Это может привести к травме и/или поломке привода.

Работа с ручным дублером состоит в следующем:

а) включение ручного дублера у приводов конструктивных схем 40, 41 и 410 осуществляется нажатием маховика (рисунок 10a), у приводов конструктивных схем 43, 430 и 44 включение ручного дублера не производится;

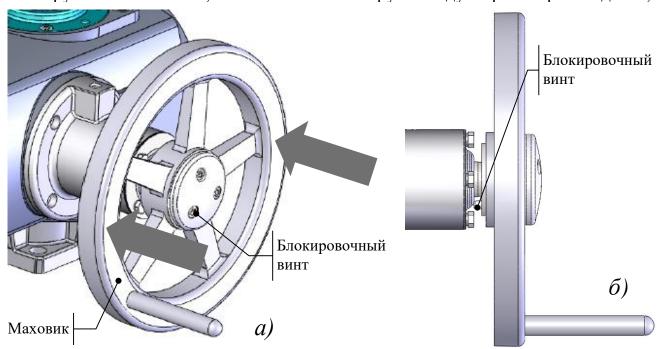


Рисунок 10 — Работа с ручным дублером: а — включение ручного дублера, б — блокировка ручного дублера

б) после включения ручного дублера, маховик можно вращать в ту или иную сторону;

Использование различных приспособлений для получения дополнительного усилия (штанг, гаечных ключей и других подобных инструментов) для проворачивания маховика ручного дублера, может привести к серьезным травмам персонала и/или повреждению привода.

- в) отключение ручного дублера (у приводов конструктивных схем 40, 41 и 410) происходит автоматически при включении электродвигателя;
- г) у приводов конструктивных схем 40, 41 и 410, возможна блокировка ручного дублера для фиксации его положения в выключенном состоянии. Для этого необходимо ввинтить до упора блокировочный торцевой винт (располагается на маховике ручного дублера и выделен красной окантовкой, см. рисунок 10). Для разблокировки дублера необходимо вывинтить блокировочный винт.

2.3.2 Способы выключения привода в конечных положениях

В зависимости от конструкции арматуры, останов в конечных положениях должен проходить либо при достижении определенного положения, т.е. измеряя пробег арматуры, либо по усилию, т.е. при достижении определенного момента. В связи с этим, привод может работать с использованием двух способов выключения:

- выключение по положению;
- выключение по моменту.

Режим выключения следует учитывать при настройке привода и средств управления приводом.

Выключение привода с блоком управления серии М1, при настраиваемых уровней достижении крутящего момента настраиваемых положений выходного вала, реализовываться ВНЕШНИМИ УСТРОЙСТВАМИ УПРАВЛЕНИЯ, на основании сигналов, выдаваемых моментными и путевыми выключателями привода.

Моментное выключение, используемое для выключения в конечных положениях по моменту, служит для защиты от перегрузки на протяжении всего хода арматуры, даже если привод настроен на выключение по положению.

Если на запорном органе арматуры в промежуточном положении образуется избыточный момент (например, при попадании постороннего предмета), моментное выключение срабатывает при достижении установленного значения. После этого двигатель отключается, тем самым, реализуя защиту привода и арматуры от повреждения.

Кроме работы с выключением по положению или моменту, привод может реализовывать запорно-регулирующий режим работы (см. п. 2.3.3 «Запорно-регулирующий режим работы», стр. 70).

2.3.2.1 Выключение по положению

Обычные положения запорной арматуры — положения «ОТКРЫТО» и «ЗАКРЫТО». После получения соответствующей команды, привод переводит запорный орган арматуры в одно их двух конечных положений. Привод перемещается с номинальной частотой вращения до установленной точки отключения.

Настройка положений выключения осуществляется настройкой концевых выключателей механического блока управления. Кроме настройки выше указанных выключателей, можно настроить срабатывание двух путевых выключателей.

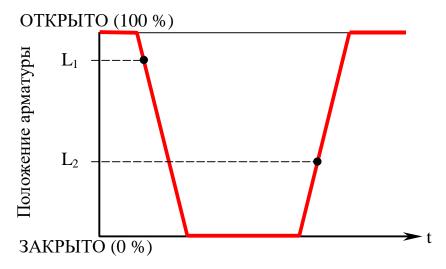


Рисунок 11 — Диаграмма работы привода при выключении по положению, где L_1 — L_2 —точки срабатывания промежуточных путевых выключателей

Точки срабатывания промежуточных путевых выключателей могут быть в любом положении арматуры между конечными положениями.

Сигналы выключателей могут быть использованы, например, для сигнализации в определенном положении арматуры, запуска дополнительного привода, запуска или остановки другого оборудования.

2.3.2.2 Выключение по моменту

После запуска привод перемещается в направлении конечного положения. В конечном положении крутящий момент внутри седла арматуры увеличивается до тех пор, пока привод не выключится автоматически при достижении заранее установленной величины крутящего момента.

Моментное выключение, используемое для выключения в конечных положениях по моменту, служит для защиты от перегрузки на протяжении всего хода арматуры, даже если привод настроен на выключение по положению.

Настройка моментов выключения осуществляется настройкой моментных выключателей механического блока управления. Заданные максимально допустимые значения моментов привода могут лежать в диапазоне 40–100 % от

верхнего предела настройки ограничителя момента привода. Моментные выключатели настраиваются раздельно в направлении закрытия и открытия арматуры.

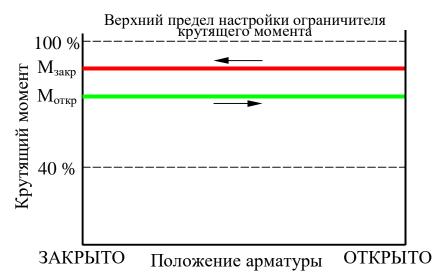


Рисунок 12 – Диаграмма моментов привода,

где $M_{\text{закр}}$ — максимально допустимое значение момента привода при движении в направлении закрытия арматуры, $M_{\text{откр}}$ — максимально допустимое значение момента привода при движении в направлении открытия арматуры.

2.3.3 Запорно-регулирующий режим работы

Данный режим необходим либо для поддержания контролируемого параметра трубопровода на некотором уровне, либо для его изменения до определенной величины.

Величина контролируемого параметра в процессе регулирования зависит от многих факторов. Например, изменение входного сигнала, колебания давления в трубопроводе или изменение температуры влияют на процесс таким образом, что необходимо постоянное изменение положения арматуры.

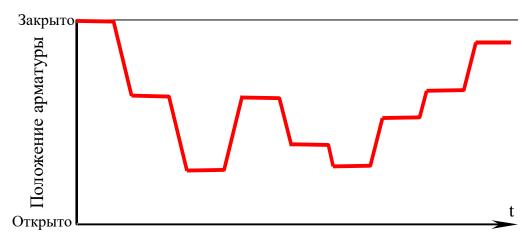


Рисунок 13 – Диаграмма работы привода в запорно-регулирующем режиме

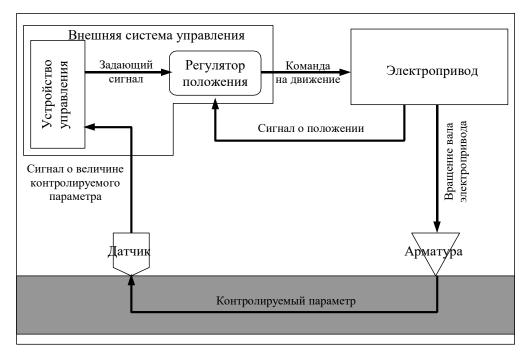


Рисунок 14 — Структурная схема системы управления при запорнорегулирующем режиме работы привода

В данном режиме положение выходного вала электропривода, а следовательно и арматуры, изменяется в соответствии с задающим сигналом от внешнего устройства управления. Задающий сигнал формируется, в свою очередь, на основании информации о величине контролируемого параметра.

Для выдачи сигнала о положении выходного вала, привод с механическим блоком управления должен содержать сигнализатор текущего положения выходного вала, исполненный в виде потенциометрического или токового датчика.

- 2.4 Настройка механического блока управления
- 2.4.1 Общий порядок настроек

Настройка механического блока управления выполняется в следующей последовательности:

- 1) настройка моментных выключателей;
- 2) настройка путевых выключателей крайних и промежуточных положений;
- 3) настройка устройства блокировки (байпаса) сигнала превышения крутящего момента привода на участках срыва арматуры;
 - 4) настройка потенциометрического или токового датчика положения;
 - 5) настройке местного указателя положения.

Работы по настройке механического блока выключателей проводить после установки привода на арматуру. Перед настройкой удалите пакеты с силикагелем из блока управления.

Перед работой отключить электропитание привода и убедиться в отсутствии в атмосфере взрывоопасных газовых примесей.

Для получения доступа к блоку, необходимо открутить четыре торцевых винта и снять с блока управления корпус со смотровым стеклом (у привода взрывозащищенного исполнения лицевая часть корпуса имеет надпись «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ») (рисунок 15).

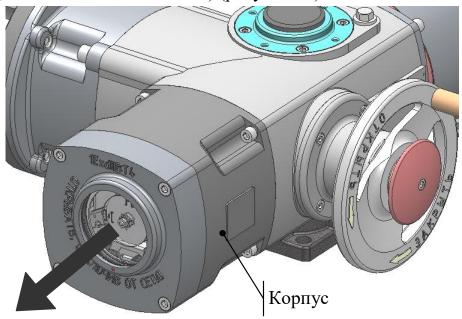


Рисунок 15 – Снятие корпуса с блока управления

Снятие крышек привода, кроме крышки модуля питания и корпуса блока управления, без согласования с поставщиком привода приводит к тому, что гарантия теряет силу. Поставщик не несет ответственности за какие-либо повреждения или ухудшение работы, которые могут последовать из-за этого.

Для приводов с большим пределом настройки путевых выключателей, допускается перемещать выходной вал привода с помощью электродвигателя. При этом должны быть выполнены настройка моментных выключателей (см. п.2.4.2 «Настройка моментных выключателей») и проверка правильности подсоединения фаз электродвигателя (см. п.2.5 «Пробный пуск).

После проведения настроек, необходимо установить корпус блока управления и проверить правильность настроек местного указателя и сигнализации на внешних устройствах управления. С этой целью следует произвести 2–3 пуска привода в обоих направлениях (см. п.2.5 «Пробный пуск).

Для приводов со степенью защиты IP68 по ГОСТ 14254-2015 рекомендуется перед установкой корпуса блока управления удалить остатки герметика и нанести новый в места прилегания корпуса блока управления и корпуса привода.

2.4.2 Настройка моментных выключателей

Моментные выключатели прошли тарировку на заводе-изготовителе и настроены на отключающие моменты, приведенные в паспорте привода. Для перенастройки выключателей следует пользоваться графиками, также приведенными в паспорте.

Порядок настройки моментных выключателей следующий:

- а) переведите привод в режим ручного управления;
- б) вращая маховик ручного дублера (или включив электродвигатель привода при большом ходе арматуры), переведите арматуру в любое промежуточное положение (примерно на середину хода между положениями "Открыто" и "Закрыто"). Включите кратковременно двигатель в направлении "Закрыто", разгрузите привод вращением маховика ручного дублера (примерно 0,5 оборота в сторону "Открыто"), тем самым, переведя силовые элементы муфты ограничения крутящего момента в не нагруженное состояние.

Для устранения люфта при настройке кулачка «Откр.» соседний кулачок «Закр.» следует слегка доварачивать пальцами по часовой стрелке до ощущения упора, а при настройке кулачка «Закр.» кулачок «Откр.» доворачивать против часовой стрелки.

в) надавите на моментный кулачок до выхода из зацепления шестерни моментного кулачка с центральной шестерней (рисунок 16);

Расположение моментных кулачков и выключателей, в зависимости от исполнения привода, может отличаться от указанного на рисунке 16. Расположение кулачков и выключателей соответствует маркировке на лицевой пластине.

г) не отпуская кулачок, поворачивайте диск со шкалой и установите диск таким образом, чтобы указатель стрелки совпал с делением шкалы, соответствующим требуемому моменту. Указанные действия необходимо выполнять, руководствуясь графиком настройки, приведенным в паспорте привода.

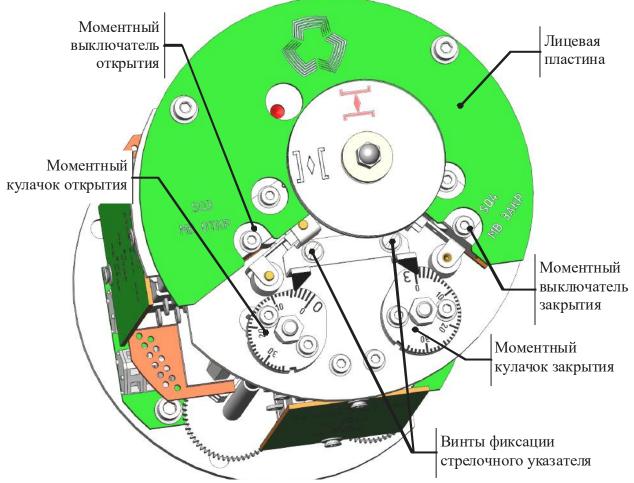


Рисунок 16 – Узел моментных выключателей

- д) отпустите моментный кулачок до зацепления шестерни моментного кулачка с центральной шестерней;
- e) для настройки второго моментного выключателя повторите действия пунктов в д;
- ж) в случае возникновения проскока кулачка при настройке привода на небольшие моменты, необходимо установить кулачок с широким выступом. Допускается подвергать замене только один из двух кулачков. Установка двух широких кулачков не допустима. Дополнительный набор кулачков с широким выступом располагается за лицевой пластиной блока управления. Для доступа к дополнительному набору кулачков необходимо открутить два торцевых винта на лицевой панели и снять ее.

При настройке блока управления не ослаблять винты, фиксирующие стрелочный указатель

2.4.3 Настройка путевых выключателей

При настройке следует учитывать, что кулачки располагаются в следующей последовательности (в направлении от местного указателя, см рисунок 17):

- 1 кулачок байпаса срабатывания моментного выключателя открытия SQ5;
- 2 кулачок байпаса срабатывания моментного выключателя закрытия SQ6;
- 3 промежуточный кулачок открытия S1;
- 4 промежуточный кулачок закрытия S2;
- 5 концевой кулачок открытия SQ1;
- 6 концевой кулачок закрытия SQ2.

Вышеуказанная последовательность кулачков соответствует направлению вращения выходного вала на закрывание по часовой стрелке. При направлении вращения выходного вала на закрывание против часовой стрелки, кулачки открытия и закрытия меняются местами.

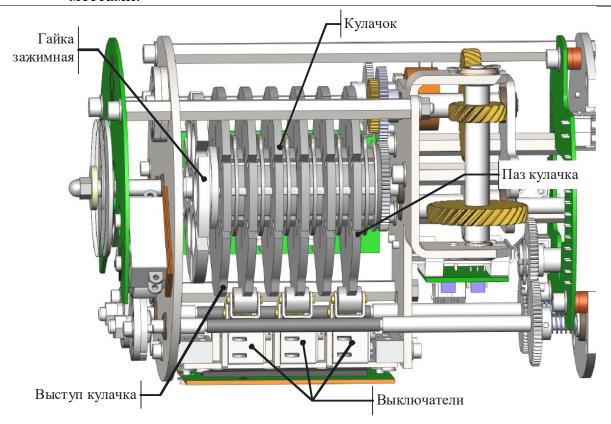


Рисунок 17 – Узел путевых выключателей

Выключатели, входящие в узел путевых выключателей, имеют маркировку в соответствии с их назначением (рисунок 18):

- "SQ5 KB ОТКР Блок. мом", "SQ6 KB ЗАКР Блок. мом" выключатели блокировки срабатывания моментных выключателей в направлении "Открыто" и "Закрыто" соответственно;
- "S1 ПВ ОТКР", "S2 ПВ ЗАКР"— промежуточные путевые выключатели в направлении "Открыто" и "Закрыто" соответственно;
- "SQ1 KB OTKP ", "SQ2 KB ЗАКР "ОБ концевые выключатели положений "Открыто" и "Закрыто" соответственно.

Рекомендуется проводить настройку путевых выключателей одновременно с настройкой устройства блокировки (байпаса) сигнала превышения крутящего момента привода (см п. 2.4.4).

С целью исключения поломки привода, вследствие ударных воздействий на привод при выходе на упор запирающего элемента при открывании, необходимо при настройке арматуры ee обеспечивать отключение привода посредством концевого выключателя таким образом, чтобы обеспечить гарантированный запирающего упора элемента арматуры недоход выключения привода с учетом возможного выбега его выходного вала.

Данная рекомендация особенно важна для быстроходных приводов с частотой вращения выходного вала 45 об/мин и более.

Порядок настройки выключателей следующий:

- а) переведите привод в режим ручного управления;
- б) ослабьте гайку зажимную узла путевых выключателей (рисунок 17);
- в) вращая маховик ручного дублера, переведите арматуру в требуемое положение «ЗАКРЫТО» или «ОТКРЫТО»;
- г) с помощью отвертки, вставленной в паз кулачка, вращайте необходимый кулачок до нажатия его выступом кнопки выключателя (при этом должен быть слышен характерный щелчок). При настройке выступ кулачка «Открыто» должен подходить к ролику выключателя со стороны, противоположной направлению стрелки 1, а выступ кулачка «Закрыто» противоположной направлению стрелки 2 (рисунок 18). (Стрелки показывают, в каком направлении следует поворачивать кулачки для увеличения хода привода).

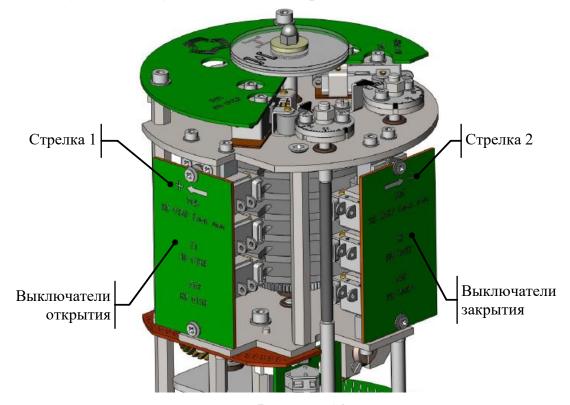


Рисунок 18

При затруднении в определении момента срабатывания выключателя на слух, рекомендуется пользоваться омметром или следить за состоянием сигнального индикатора в цепи выключателя.

- д) для настройки остальных выключателей необходимо перевести ручным дублером арматуру в соответствующее положение и выполнить действия пунктов в и г;
 - е) закрутите гайку зажимную узла путевых выключателей;
- ж) пользуясь ручным дублером проверить срабатывание выключателей. В случае несоответствия положения срабатывания выключателя требуемому, подкорректируйте положение кулачка.

2.4.4 Настройка устройства блокировки (байпаса) сигнала превышения крутящего момента привода на участках срыва арматуры

На заводе-изготовителе кулачки блокировки не настраиваются на арматуру потребителя. Настройка выполняется потребителем самостоятельно после установки привода на арматуру и настройки выключателей крайних положений. Блокировка действует, пока выступ кулачка блокировки срабатывания моментного выключателя нажимает кнопку соответствующего выключателя.

Рекомендуется проводить настройку устройства блокировки (байпаса) сигнала превышения крутящего момента привода одновременно с настройкой путевых выключателей (см п. 2.4.3).

Порядок настройки устройства блокировки следующий:

- а) переведите привод в режим ручного управления;
- б) при помощи ручного дублера отведите арматуру от крайнего положения «ЗАКРЫТО» или «ОТКРЫТО» на расстояние, с которого должна перестать действовать блокировка. Рекомендуется устанавливать зону блокировки в пределах от 5 до 15% от верхнего предела настройки путевых выключателей;
 - в) ослабьте гайку зажимную узла путевых выключателей (рисунок 17);
- г) пользуясь отверткой как рычагом, вставленным в паз кулачка, проверните соответствующий кулачок до того момента, пока выступ кулачка не освободит кнопку своего выключателя (при этом должен быть слышен характерный щелчок). При настройке выступ кулачка байпаса срабатывания моментного выключателя открытия SQ5 должен сходить с ролика выключателя SQ5 в направлении стрелки 1, а выступ кулачка байпаса срабатывания моментного выключателя закрытия SQ6 с ролика выключателя SQ6 – в направлении стрелки 2 определении момента срабатывания (рисунок 18). При затруднении В выключателя на слух, рекомендуется пользоваться омметром или следить за состоянием сигнального индикатора в цепи микропереключателя;
 - д) закрутите гайку зажимную узла путевых выключателей.

2.4.5 Настройка потенциометрического датчика положения

На заводе-изготовителе потенциометрический датчик (далее по тексту «потенциометр») устанавливается без настройки на арматуру потребителя. Потенциометр может быть безупорного типа (угол поворота вала не ограничен) или иметь механический упор; в этом случае угол поворота вала составляет меньше 360 градусов. Независимо от наличия или отсутствия упора рабочий сектор составляет около 320 градусов. Вне рабочего сектора, в непроводящем секторе, сопротивление между скользящим контактом и крайними выводами потенциометра практически бесконечно.

Настройка датчика производится после установки привода на арматуру в следующем порядке:

- а) переведите привод в режим ручного управления;
- б) вращая маховик ручного дублера, переведите арматуру в положение «Закрыто»;
- в) ослабить винты фиксирующие шестерню на валу потенциометра. Вращая отверткой вал потенциометра (рисунок 19) по часовой стрелке, вывести его в крайнее положение. Крайнее положение определяется либо по достижению скользящим контактом потенциометра механического упора, либо по прохождению скользящим контактом потенциометра непроводящего сектора потенциометра (определяется с помощью омметра).

После вывода в крайнее положение вал потенциометра необходимо слегка провернуть в обратном направлении, чтобы избежать возможного выхода скользящего контакта потенциометра на упор или на непроводящий сектор в процессе эксплуатации.

г) измерить с помощью омметра сопротивление между контактами R1.1-R1.2 и R1.3-R1.2 (см. рисунок A.5 приложения A) для определения требуемого направления изменения сопротивления потенциометра (от 0 до 100 Ом или от 100 до 0 Ом) при перемещении выходного вала привода.;

д) затянуть винты фиксирующие шестерню на валу потенциометра.

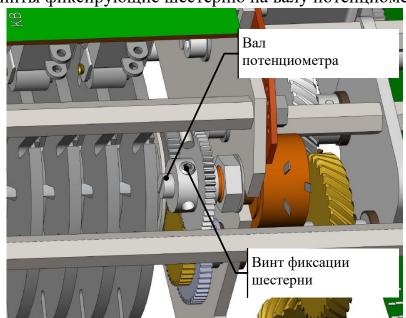


Рисунок 19 – Настройка потенциометрического датчика

2.4.6 Настройка токового датчика положения

На заводе-изготовителе токовый датчик настроен таким образом, что сила тока меняется от 4 до 20 мА при вращении выходного вала по часовой стрелке (если смотреть на привод сверху) на полное число оборотов. Потенциометр, которым комплектуется токовый датчик, может быть безупорного типа (угол поворота вала не ограничен) или иметь механический упор; в этом случае угол поворота вала составляет меньше 360 градусов. Независимо от наличия или отсутствия упора рабочий сектор составляет около 320 градусов. Вне рабочего сектора, в непроводящем секторе, сопротивление между скользящим контактом и крайними выводами потенциометра практически бесконечно.

Потребитель может настроить токовый датчик так, чтобы значения тока 4 мА и 20 мА соответствовали не предельным положениям выходного вала привода, а состояниям арматуры «Закрыто» и «Открыто».

Настройка токового датчика производится с помощью многооборотных подстроечных резисторов R1 и R2, расположение которых показано на рисунке 20. Электрический угол поворота вала резисторов R1 и R2 – 3960° (11 оборотов), механический упор отсутствует.

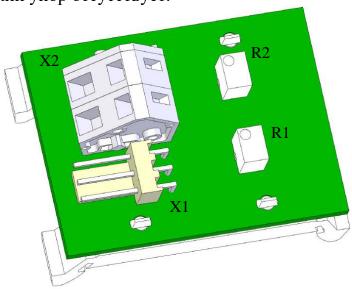


Рисунок 20 – Плата преобразователя «напряжение-ток» (вид сверху)

Для настройки токового датчика необходимо после установки привода на арматуру выполнить следующие действия:

- а) переведите привод в режим ручного управления;
- б) вращая маховик ручного дублера, переведите арматуру в положение «Закрыто»;
- в) вращая вал подстроечного резистора R2 против часовой стрелки, вывести его в крайнее положение. Крайнее положение гарантированно достигается поворотом вала на 11 оборотов и более;
- г) подключить к контактам потенциометрического датчика положения привода (см. <u>приложение A</u>, стр. 88) миллиамперметр, нагрузочное сопротивление R и источник питания G согласно рисунку 21 (схема для привода с кабельными вводами с клеммным подключением);

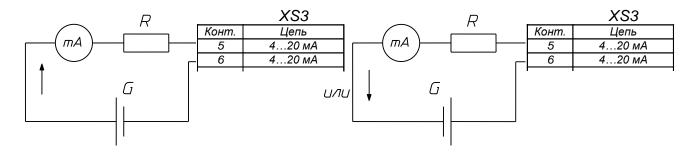


Рисунок 21 — Схема подключения токового датчика, где G — источник питания токового датчика, V = 9...36 B; R — нагрузочное сопротивление, R < (V-9) / 0,02

д) вращая вал потенциометра (рисунок 19) по часовой стрелке, выведите его в крайнее положение. Крайнее положение определяется либо по достижению скользящим контактом потенциометра механического упора, либо по прохождению скользящим контактом потенциометра непроводящего сектора потенциометра (определяется с помощью миллиамперметра);

После вывода в крайнее положение вал потенциометра необходимо слегка провернуть в обратном направлении, чтобы избежать возможного выхода скользящего контакта потенциометра на упор или на непроводящий сектор в процессе эксплуатации.

- е) вращая вал подстроечного резистора R1, добиться, чтобы ток протекающий по цепи, был равен 4 ± 0.1 мA;
 - ж) вывести арматуру в положение «Открыто»;
- и) вращая вал подстроечного резистора R2, добиться, чтобы ток, протекающий по цепи, был равен 20 ± 0.1 мA;
- к) вывести арматуру в положение «Закрыто» и измерить силу тока. Если сила тока находится вне диапазона 4 ± 0.1 мА, повторить предыдущие действия е)–к).

Нарушение последовательности действий при перенастройке токового датчика с меньшего рабочего хода привода на больший может вызвать перегрузку и выход из строя электронных компонентов.

2.4.7 Настройка местного указателя

Порядок настройки местного указателя следующий:

- а) переведите привод в режим ручного управления;
- б) вращая маховик ручного дублера, переведите арматуру в положение «Закрыто» (соответствующее нижнему диску местного указателя, см. рисунок 22);
- в) удерживая верхний диск от проворачивания, поверните нижний диск местного указателя так, чтобы установить значок ., нанесенный на диске, напротив метки;
- г) вращая маховик ручного дублера, переведите арматуру в положение «Открыто» (соответствующее верхнему диску местного указателя);
- д) удерживая нижний диск от проворачивания, поверните верхний диск местного указателя так, чтобы установить значок —, нанесенный на диске, напротив метки.

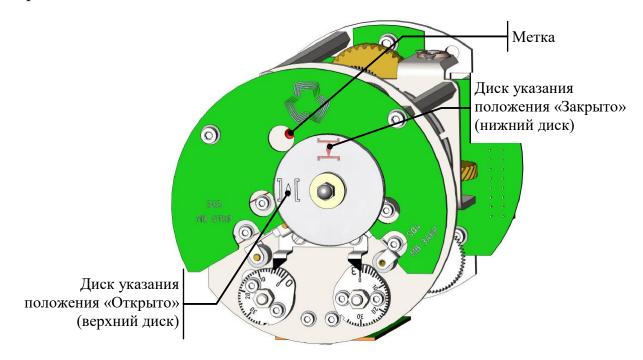


Рисунок 22 – Местный указатель положения

2.5 Пробный пуск

Для осуществления первого пуска привода необходимо выполнить следующие действия:

- а) проверьте правильность установки привода на арматуре и правильность электрического подключения;
 - б) подайте напряжение питания;
- в) убедитесь в отсутствии сигналов аварии на внешних устройствах управления;

Перед пуском электропривода необходимо проверить правильность подсоединения фаз электродвигателя.

- г) для проверки правильности подсоединения фаз электродвигателя необходимо:
 - ручным дублером вывести запорный орган в промежуточное положение;
 - запустить привод в направление закрывания или открывания арматуры;
- проверить направление движения запорного органа: местный указатель и выходной вал привода при движении в сторону открывания должны вращаться против часовой стрелки, а при движении в сторону закрывания по часовой стрелке (при исполнении привода с закрыванием против часовой стрелки (X_9 =2, см. таблицу 1а), местный указатель и выходной вал привода при движении в сторону открывания должны вращаться по часовой стрелке). Вращение контролировать смотря сверху на вал привода, предварительно сняв заглушку вала.

Пуск для проверки правильности подсоединения фаз электродвигателя осуществлять на короткое время, позволяющее определить направление движения.

- д) проведите следующие настройки привода:
 - 1) настройте моментные выключатели;
 - 2) настройте конечные и промежуточные путевые выключатели;
 - 3) настройте местный указатель механического блока управления;
- е) переведите привод в ручное управление (см. п.2.3.1 «<u>Работа с помощью</u> ручного дублера», стр. 67);
- ж) с помощью ручного дублера переведите привод в положение ОТКРЫТО и ЗАКРЫТО, убедитесь в правильности индикации местного указателя и индикации на внешних устройствах управления;
- з) с помощью внешних устройств управления переведите привод в положение ОТКРЫТО и ЗАКРЫТО. При этом необходимо проконтролировать:
 - автоматическое отключение ручного дублера в момент включения электродвигателя привода;
 - правильности индикации местного указателя и индикации на внешних устройствах управления.

3 Техническое обслуживание

Техническое обслуживание приводов, поставляемых на объекты ПАО "Газпром", осуществлять согласно разделу 8 СТО Газпром 2-2.3-385-2009.

Обслуживающий персонал может быть допущен к обслуживанию приводов только после прохождения соответствующего инструктажа по технике безопасности. Обслуживание приводов должно вестись в соответствии с действующими «Правилами технической эксплуатации электроустановок» и настоящего руководства.

Прежде чем приступать к какой-либо операции по техническому обслуживанию убедитесь в том, что сетевое питание и любые другие источники напряжения, подведенные к клеммной плате, отключены.

Привод не рассчитан на вскрытие в течение гарантийного срока эксплуатации. Снятие крышек привода, кроме крышки модуля питания и корпуса панели индикации, без согласования с поставщиком привода приводит к тому, что гарантия теряет силу. Поставщик не несет ответственности за какие-либо повреждения или ухудшение работы, которые могут последовать из-за этого.

Стандартное техническое обслуживание

После ввода в эксплуатацию необходимо проверить привод на отсутствие повреждений лакокрасочного покрытия. Тщательно устранить повреждения для исключения возникновения коррозии.

Примерно через 6 месяцев после ввода в эксплуатацию, а потом ежегодно, проверить затяжку болтов между приводом и арматурой. При необходимости подтянуть.

При не частом включении проводить примерно каждые 6 месяцев пробный пуск для обеспечения постоянной эксплуатационной готовности.

В процессе эксплуатации привод должен подвергаться систематическому внешнему осмотру и смазке.

При периодическом внешнем осмотре, который должен проводиться не реже одного раза в три месяца, проверяется:

- состояние крепления привода на месте установки;
- состояние соединения выходного звена привода с приводимым им в движение элементом;
 - наличие всех крепежных деталей и их элементов;
 - целостность корпуса;
 - уплотнение кабелей;
- наличие предупредительных надписей, заземляющих устройств, заглушек в неиспользованных кабельных вводах.

По истечении гарантийного срока, с периодичностью один раз в год необходимо проверять состояние смазки подвижных частей привода и при обнаружении недостаточности смазки дополнять ее, по возможности удалив отработанную смазку.

Так как резиновые уплотнительные элементы подвергаются старению, необходимо их периодически проверять и при необходимости заменять.

Заменяйте прокладки, неисправность которых приводит к утечке масла или проникновению воды.

При профилактическом осмотре необходимо проводить чистку привода, замену смазки, проверять взрывозащитные поверхности, сопротивление изоляции.

Замену смазки рекомендуется проводить:

- при не частой работе после 10 12 лет
- при интенсивной работе после 6 8 лет.

Тип применяемой смазки (масла) редуктора привода указан в паспорте на привод.

Исправный привод не должен иметь следов вытекания масла на наружной поверхности корпуса. Наличие их указывает на возможный износ манжет или повреждение уплотнительных резиновых колец.

Специальное техническое обслуживание

Прекращение эксплуатации привода и решение о необходимости отправки привода в ремонт или в утилизацию производят в следующих случаях:

- отказ привода, проявившийся в несоответствии параметров, характеристик и функциональных возможностей привода требованиям настоящих РЭ,
 - достижение назначенного срока службы;
 - достижение назначенного ресурса;
 - нарушение целостности деталей привода.

В случае отказа привода обращайтесь к пункту «Устранение неисправностей», где указаны возможные причины неисправности и способы их устранения.

Капитальный ремонт привода необходимо проводить при существенном ухудшении его характеристик или потере работоспособности. Капитальный ремонт должен осуществляться на предприятии-изготовителе привода.

Ремонт, связанный с восстановлением взрывозащиты, проводить в соответствии с «Инструкцией по ремонту взрывозащищенного электрооборудования».

При разборке и сборке приводов должна быть исключена возможность их загрязнения и попадания посторонних предметов во внутренние полости привода и арматуры.

Перед сборкой детали очистить и промыть в бензине Б-70 ГОСТ 1012-72 или уайт-спирите ГОСТ 3134-78 и протереть чистой тканью. Детали из резины протереть сухой тканью. Перед сборкой обработанные поверхности узлов и деталей смазать тонким слоем смазки ЦИАТИМ-221 ГОСТ 9433-80.

Смазочные материалы, не рекомендованные инструкцией по эксплуатации приводов, могут применяться только после официального подтверждения их пригодности предприятиемизготовителем.

Специальное техническое обслуживание рекомендуется проводить и в случае, если привод во время работы издает сильный шум.

Устранение неисправностей

Устранение неисправностей											
Неисправность	Причина	Способ устранения									
При померти пусков в	Неисправна силовая цепь	Проверить силовую цепь									
При нажатии пусковых	или магнитный	и магнитный пускатель и									
кнопок ротор	пускатель	устранить неисправность									
электродвигателя не	Нет напряжения на щите	Подать напряжение на									
вращается	управления	щит управления									
	Разрегулировался	Отрегулировать путевой									
При достижении	путевой или моментный	или моментный кулачок									
затвором арматуры	кулачок закрывания	закрывания (открывания)									
положения «ЗАКРЫТО»	(открывания)	и надежно закрепить его									
или «ОТКРЫТО»	Отказал путевой или	Заменить путевой или									
электродвигатель не	моментный	моментный									
отключается	микровыключатель	микровыключатель									
	закрывания (открывания)	закрывания (открывания)									
		Включить электропривод									
		в обратном направлении									
		и повторить пуск									
Во время хода арматуры		электропривода в том									
электропривод		направлении, в котором									
остановился и на пульт	Заедание подвижных	произошло заедание.									
управления поступил	частей арматуры или	Если при повторном									
сигнал от моментного	электропривода	пуске произойдет									
выключателя		остановка									
		электропривода, то надо									
		выявить причину и									
		устранить неисправность									
	D	Отрегулировать путевые									
D ~	Разрегулировались	кулачки и надежно									
В крайних положениях	путевые кулачки	закрепить их									
затвора арматуры на		Проверить цепь									
пульт управления не		управления, устранить									
поступают сигналы с	Отсутствует напряжение	неисправность и подать									
концевых выключателей	в цепи управления	напряжение в цепь									
		управления									
На пульт управления											
одновременно поступили	Короткое замыкание										
сигналы с концевых выключателей	между проводами,	Найти место замыкания и									
	идущими к путевому	устранить неисправность									
«ЗАКРЫТО» и	выключателю										
«ОТКРЫТО»											
IIII DII O											

4 Хранение

Привод отправляется с завода-изготовителя в рабочем состоянии, что засвидетельствовано в паспорте устройства. С целью поддержания исправного состояния привода до момента его подключения к сети электропитания в течение всего периода хранения должны соблюдаться нижеперечисленные требования к хранению и переконсервации.

- 4.1 Хранение приводов должно производиться в законсервированном виде и заводской упаковке в закрытых помещениях, удовлетворяющих условиям 2(С) по ГОСТ 15150-69, но при этом верхнее значение температуры окружающего воздуха должно соответствовать значениям, указанным в таблице 4, а нижнее значение температуры хранения минус 60°С для всех исполнений приводов. Складировать в хорошо проветриваемых, сухих помещениях. Защищать от сырости грунта путём хранения на стеллаже или деревянном поддоне.
- 4.2 Срок хранения приводов в неповрежденной упаковке при использовании консервантов: ЛИТОЛ-24 не более 12 месяцев; НГ-222 не более 36 месяцев со дня отгрузки. При более длительном хранении при необходимости проводится переконсервация.
- 4.3 В случае извлечения привода из упаковки, с предполагаемым дальнейшим хранением, заводская гарантия сохраняется при соблюдении следующих условий:
- 4.3.1 Кабельные вводы должны быть загерметизированы штатно обжатым кабелем в кабельном вводе привода или заглушкой кабельного ввода.
- 4.3.2 Привод вместе с арматурой или отдельно переконсервируют, упаковывают и укладывают в тару. Категория упаковки КУ-2 по ГОСТ 23170-78.
- 4.3.3 Переконсервация подтверждена печатью ОТК предприятия, выполнившего переконсервацию в новой упаковке.
- 4.3.4 Условия хранения привода или привода совместно с арматурой до ввода в эксплуатацию соответствуют п.4.1.
- 4.4 Консервацию (переконсервацию) приводов производить в соответствии с требованиями раздела 10 ГОСТ 9.014-78. Перед консервацией поверхность приводов очистить от загрязнений, обезжирить и высушить. При нарушении лакокрасочного покрытия произвести окраску привода. Консервации следует подвергать наружные неокрашенные поверхности привода.

В паспорте на привод указать:

- дату проведения консервации;
- метод консервации;
- срок действия консервации.

Качество консервационных смазок должно быть подтверждено сертификатами предприятия-изготовителя.

5 Транспортирование

Транспортирование приводов допускается любым видом транспорта на любые расстояния в условиях, исключающих повреждение приводов и его тары:

- привода должны быть закреплены способом, исключающим возможность перемещения их внутри ящика;
 - при погрузке и разгрузке не бросать и не кантовать ящики;
 - при перевозке ящики должны быть надежно закреплены от перемещения.

Условия транспортирования приводов в части воздействия климатических факторов по ГОСТ 15150–69:

- -8(OЖ3) для исполнения У1, УХЛ1, М1, М5.1;
- -9(OЖ1) для исполнений T1,

но при этом, верхнее значение температуры окружающего воздуха должно соответствовать значениям, указанным в таблице 4, а нижнее значение температуры транспортирования — минус 60° С для всех исполнений приводов.

Условия транспортирования в части воздействия механических факторов должны соответствовать категории С по ГОСТ 23170-78.

Все работы по размещению и креплению приводов по перевозке должны производиться в соответствии с действующими правилами для конкретного вида транспорта.

6 Утилизация

Привод изготовлен с применением повторно используемых материалов: металла (сталь, чугун, латунь, бронза, медь, алюминиевые сплавы) и пластмассы.

Тару и утилизируемое изделие после истечения срока службы следует разобрать, составные части распределить по виду использованного материала и доставить на место их утилизации или ликвидации.

Приводы и тара не являются источниками загрязнения окружающей среды и не содержат опасные выбросы.

Приложение А

Схемы подключения привода

Таблица А.1 – Соответствие контактов привода с блоком управления М1

Таолица 11	:1 COOTBETC		привода с олоком у	-
Привод с ка	бельными	Привод без		ание цепей
ввода		кабельных	Блок управления М1	Блок управления М1
ввода	amm	вводов.	с сигнализацией	с сигнализацией
Контакты с	Контакты со	Контакты со	посредством	посредством
клеммным	штепсельным	штепсельным	четырехконтактных	трехконтактных
подключением	подключением	подключением	выключателей	выключателей
XS1.1	XS2.1	XS3.1	Фаза А	Фаза А
XS1.2	XS2.2	XS3.2	Фаза В	Фаза В
XS1.3	XS2.3	XS3.3	Фаза С	Фаза С
XS2.1	XS1.1	XS1.1	ПВ откр НЗ(1)	ПВ откр общий
XS2.2	XS1.2	XS1.2	ПВ откр Н3(2)	ПВ откр НЗ
XS2.3	XS1.3	XS1.3	ПВ откр НР(1)	ПВ откр НР
XS2.4	XS1.4	XS1.4	ПВ откр НР(2)	-
XS2.5	XS1.5	XS1.5	ПВ закр Н3(1)	ПВ закр общий
XS2.6	XS1.6	XS1.6	ПВ закр Н3(2)	ПВ закр НЗ
XS2.7	XS1.7	XS1.7	ПВ закр НР(1)	ПВ закр НР
XS2.8	XS1.8	XS1.8	ПВ закр НР(2)	-
XS2.9	XS1.9	XS1.9	М откр НЗ(1)	М откр общий
XS2.10	XS1.10	XS1.10	М откр НЗ(2)	М откр НЗ
XS2.11	XS1.11	XS1.11	М откр НР(1)	М откр НР
XS2.12	XS1.12	XS1.12	М откр НР(2)	-
XS2.13	XS1.13	XS1.13	М закр НЗ(1)	М закр общий
XS2.14	XS1.14	XS1.14	М закр НЗ(2)	М закр НЗ
XS2.15	XS1.15	XS1.15	М закр НР(1)	М закр НР
XS2.16	XS1.16	XS1.16	М закр НР(2)	-
XS2.17	XS1.17	XS1.17	ДОП1 Н3(1)	ДОП1 общий
XS2.18	XS1.18	XS1.18	ДОП1 Н3(2)	доп1 нз
XS2.19	XS1.19	XS1.19	ДОП1 НР(1)	ДОП1 НР
XS2.20	XS1.20	XS1.20	ДОП1 НР(2)	-
XS2.21	XS1.21	XS1.21	ДОП2 Н3(1)	ДОП2 общий
XS2.22	XS1.22	XS1.22	ДОП2 Н3(2)	ДОП2 Н3
XS2.23	XS1.23	XS1.23	ДОП2 НР(1)	ДОП2 НР
XS2.24	XS1.24	XS1.24	ДОП2 НР(2)	-
XS3.1	XS1.34	XS2.1	R1.1	R1.1
XS3.2	XS1.36	XS2.2	R1.3	R1.3
XS3.3	XS1.33	XS2.3	R1.2	R1.2
XS3.5	XS1.37	XS2.4	Ток.датч.пол.	Ток.датч.пол.
XS3.6	XS1.38	XS2.5	Ток.датч.пол.	Ток.датч.пол.
XS3.7	XS1.25	XS2.6	Дат.темпер.1	Дат.темпер.1
XS3.8	XS1.26	XS2.7	Дат.темпер.2	Дат.темпер.2
XS3.9	XS1.71	XS2.8	Обогрев 220-1	Обогрев 220-1
XS3.10	XS1.72	XS2.9	Обогрев 220-2	Обогрев 220-2
XS3.11	XS1.27	XS2.23	Блинкер 1	Блинкер 1
XS3.12	XS1.28	XS2.24	Блинкер 2	Блинкер 2

Примечание – дальнейшие схемы подключения приведены для исполнения привода с кабельными вводами с клеммным подключением

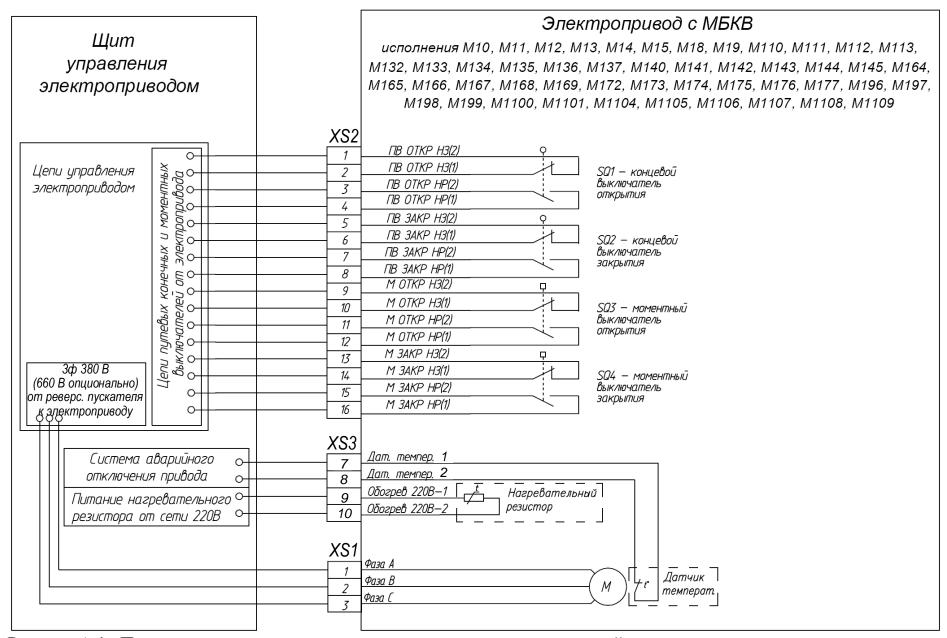


Рисунок А.1 –Принципиальная схема подключения привода с сигнализацией о достигаемых положениях и моментах посредством четырехконтактных выключателей (примечания к рисунку см. на стр. 93)

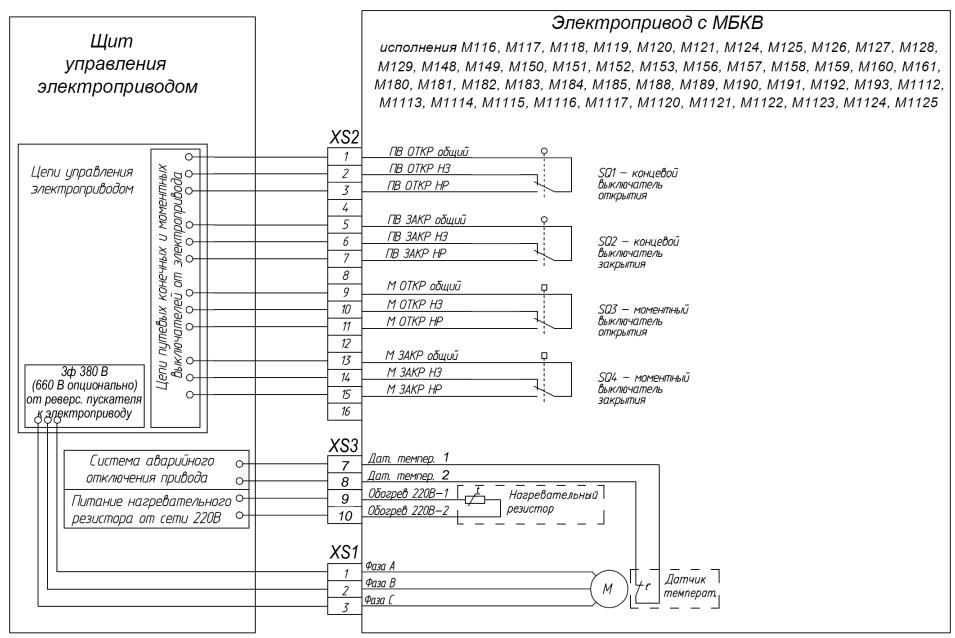


Рисунок А.2 – Принципиальная схема подключения привода с сигнализацией о достигаемых положениях и моментах посредством трехконтактных выключателей (примечания к рисунку см. на стр. 93)

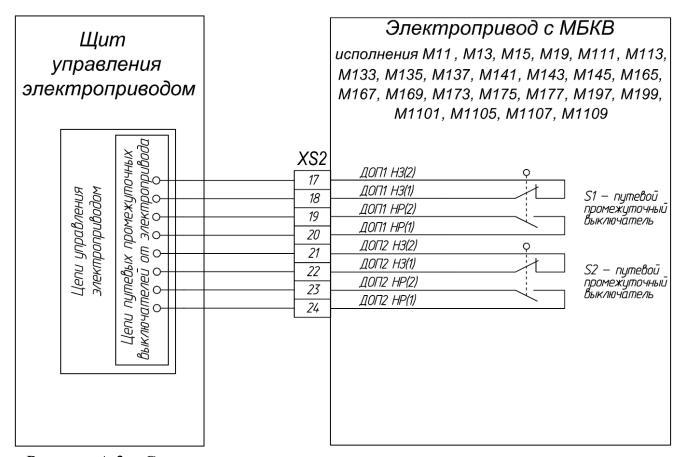


Рисунок А.3 – Схема подключения промежуточных путевых четырхконтактных выключателей (примечания к рисунку см. на стр. 93)

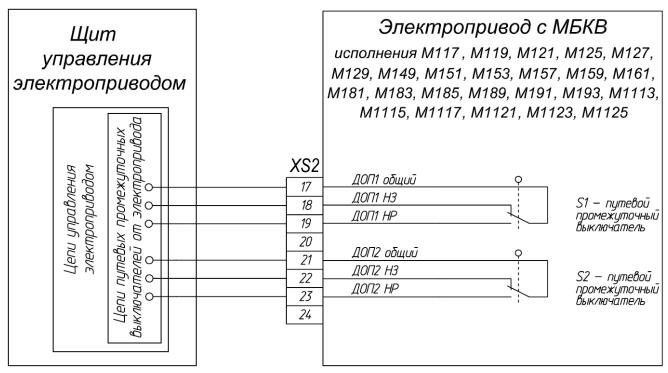


Рисунок А.4 – Схема подключения промежуточных путевых трехконтактных выключателей (примечания к рисунку см. на стр. 93)

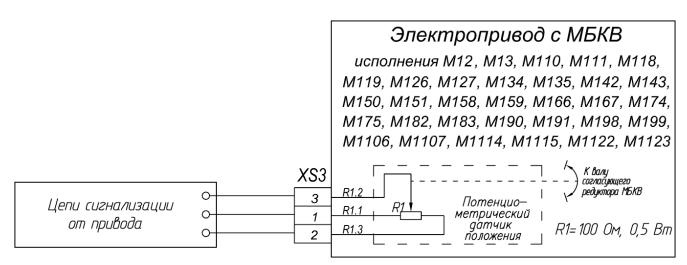


Рисунок А.5 – Сигнализация о текущем положении выходного вала посредством изменения сопротивления потенциометра

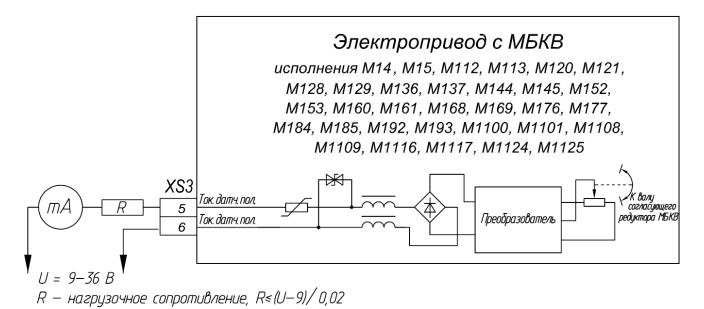


Рисунок А.6 – Сигнализация о текущем положении выходного вала посредством токового сигнала (4—20 мA)

Примечания

- 1 Миллиамперметр, включенный в цепь, показывает ток, пропорциональный проценту открытия арматуры в диапазоне от 4 до 20мА.
- 2 Резистор R ограничивает протекающий в цепи ток.

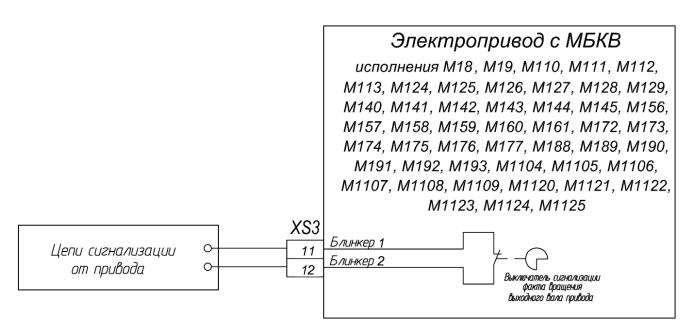


Рисунок А.7 – Сигнализация факта вращения выходного вала привода посредством замыкания и размыкания сухих контактов выключателя (блинкера)

Примечание к рисункам А.1-А.4, А.7:

- 1 Микровыключатели блока управления привода и термовыключатель двигателя привода, реализующие "сухой" контакт, обеспечивают коммутацию:
 - цепей переменного тока напряжением 220 B с силой тока от 0,02 до 0,5 A при активной нагрузке;
 - цепей постоянного тока напряжением $24/48~\mathrm{B}$ с силой тока от $0,01~\mathrm{дo}~0,5~\mathrm{A}$ при активной нагрузке.

Приложение Б

Таблицы проверки сопротивления изоляции
Таблица Б.1 – Проверка сопротивления изоляции цепей с Upaб. = 220 В

				XS1 ¹⁾	, XS2 ²⁾ ,	$XS3^{3)}$											XS	$2^{1)}$ (2	XS1	(2,3)										
			Корпус	Фаза С	Фаза В	Фаза А	ДОП2 НР(2)	ДОП2 НР(1)	ДОП2 Н3(2)	ДОП2 Н3(1)	ДОП1 НР(2)	ДОП1 НР(1)	ДОП1 Н3(2)	ДОП1 Н3(1)	М закр НР(2)	М закр НР(1)	М закр Н3(2)	М закр Н3(1)	М откр НР(2)	М откр НР(1)	М откр Н3(2)	М откр Н3(1)	ПВ закр НР(2)	ПВ закр НР(1)	ПВ закр Н3(2)	ПВ закр Н3(1)	ПВ откр НР(2)	ПВ откр НР(1)	ПВ откр Н3(2)	ПВ откр Н3(1)
				3	2	1	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	ПВ откр НЗ(1)	1																												
	ПВ откр НЗ(2)	2																												
	ПВ откр НР(1)	3																												
	ПВ откр НР(2)	4																												
	ПВ закр Н3(1)	5																												
	ПВ закр Н3(2)	6																												
	ПВ закр НР(1)	7																												
	ПВ закр НР(2)	8																												
	М откр Н3(1)	9																												
3)	М откр Н3(2)	10																												
1 ² ,	М откр НР(1)	11																												
$(XS1^{2,3})$	М откр НР(2)	12																												
C	М закр Н3(1)	13																												
321	М закр Н3(2)	14																												
XS2 ¹⁾	М закр НР(1)	15																												
	М закр НР(2)	16																												
	ДОП1Н3(1)	17																												
	ДОП1Н3(2)	18																												
	ДОП1НР(1)	19																												
	ДОП1НР(2)	20																												
	ДОП2 Н3(1)	21																												
	ДОП2 Н3(2)	22																												
	ДОП2 НР(1)	23																												
	ДОП2 НР(2)	24																												
Пъи	мепаниа.																													-

Примечания:

- 1 Для привода с кабельными вводами с клеммным подключением. 2 Для привода с кабельными вводами со штепсельным подключением.
- 3 Для привода без кабельных вводов со штепсельным подключением.

		Ī	
			၁
			Корпус
			Ko
32^{2} ,	Фаза А	1	
$XSI^{1)}, XS2^{2)}, XS3^{3)}$	Фаза В	2	
ISX	Фаза С	3	

Примечания:

- 1 Для привода с кабельными вводами с клеммным подключением.
- 2 Для привода с кабельными вводами со штепсельным подключением.
- 3 Для привода без кабельных вводов со штепсельным подключением.

Проверять электрическое сопротивление изоляции между каждым контактом, указанным в вертикальном заголовочном столбце таблицы, и каждым контактом, указанным в горизонтальной заголовочной строке таблицы, исключая таблице сочетания контактов, выделенные В темным цветом заливки соответствующей ячейки.

Приложение ВСоответствие кода исполнения блоков управления серии М1, реализуемым дополнительным функциям

Код	Дополнительные функции											
блока	z_1	\mathbf{z}_2	\mathbf{Z}_3	\mathbf{Z}_4	Z ₅	Z ₆	Z ₇					
M10												
M11	1											
M12		1										
M13	1	1										
M14			1									
M15	1		1									
M18				1								
M19	1			1								
M110		1		1								
M111	1	1		1								
M112			1	1								
M113	1		1	1								
M116					1							
M117	1				1							
M118		1			1							
M119	1	1			1							
M120			1		1							
M121	1		1		1							
M124				1	1							
M125	1			1	1							
M126		1		1	1							
M127	1	1		1	1							
M128			1	1	1							
M129	1		1	1	1							
M132						1						
M133	1					1						
M134		1				1						
M135	1	1				1						
M136			1			1						
M137	1		1			1						
M140				1		1						
M141	1			1		1						
M142		1		1		1						
M143	1	1		1		1						
M144			1	1		1						
M145	1		1	1		1						

Код			Дополн	ительные ф	ункции		
блока	z_1	\mathbf{z}_2	\mathbf{z}_3	\mathbf{Z}_4	Z 5	z_6	Z ₇
M148					1	1	
M149	1				1	1	
M150		1			1	1	
M151	1	1			1	1	
M152			1		1	1	
M153	1		1		1	1	
M156				1	1	1	
M157	1			1	1	1	
M158		1		1	1	1	
M159	1	1		1	1	1	
M160			1	1	1	1	
M161	1		1	1	1	1	
M164							1
M165	1						1
M166		1					1
M167	1	1					1
M168			1				1
M169	1		1				1
M172				1			1
M173	1			1			1
M174		1		1			1
M175	1	1		1			1
M176			1	1			1
M177	1		1	1			1
M180					1		1
M181	1				1		1
M182		1			1		1
M183	1	1			1		1
M184			1		1		1
M185	1		1		1		1
M188				1	1		1
M189	1			1	1		1
M190		1		1	1		1
M191	1	1		1	1		1
M192			1	1	1		1
M193	1		1	1	1		1
M196						1	1
M197	1					1	1
M198		1				1	1
M199	1	1				1	1
M1100			1			1	1

Код	Дополнительные функции											
блока	\mathbf{z}_1	\mathbf{z}_2	\mathbf{Z}_3	\mathbf{Z}_4	Z 5	Z_6	\mathbf{z}_7					
M1101	1		1			1	1					
M1104				1		1	1					
M1105	1			1		1	1					
M1106		1		1		1	1					
M1107	1	1		1		1	1					
M1108			1	1		1	1					
M1109	1		1	1		1	1					
M1112					1	1	1					
M1113	1				1	1	1					
M1114		1			1	1	1					
M1115	1	1			1	1	1					
M1116			1		1	1	1					
M1117	1		1		1	1	1					
M1120				1	1	1	1					
M1121	1			1	1	1	1					
M1122		1		1	1	1	1					
M1123	1	1		1	1	1	1					
M1124			1	1	1	1	1					
M1125	1		1	1	1	1	1					

Приложение Г Присоединительные размеры электропривода

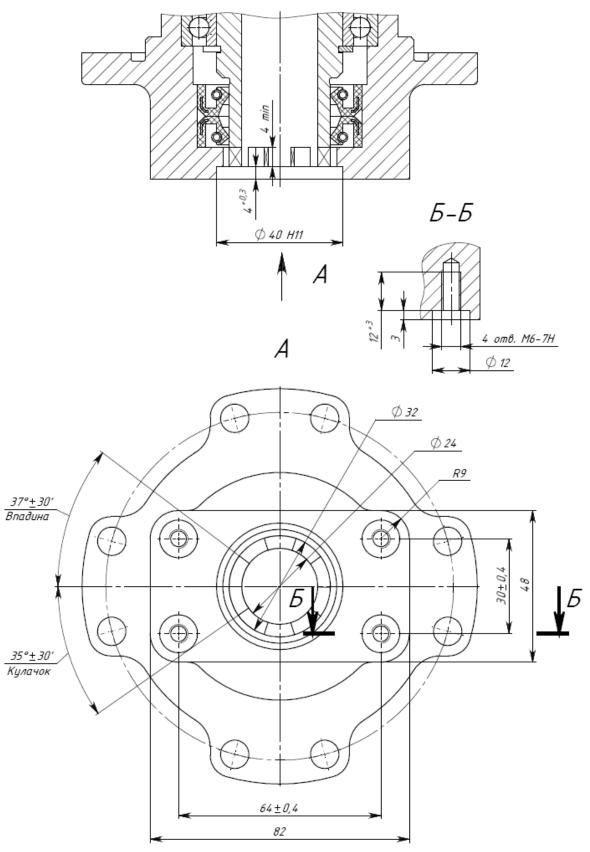
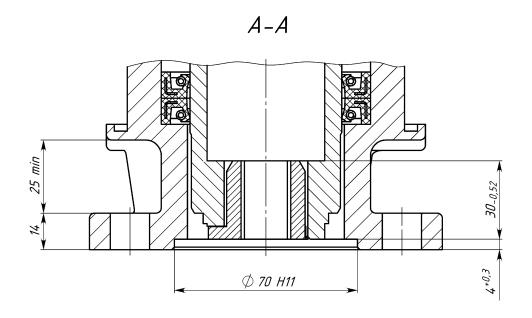



Рисунок $\Gamma.1$ — Присоединение типа МК под кулачки

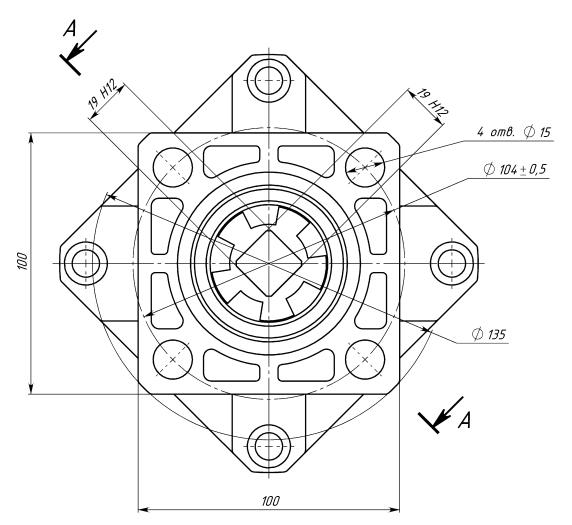
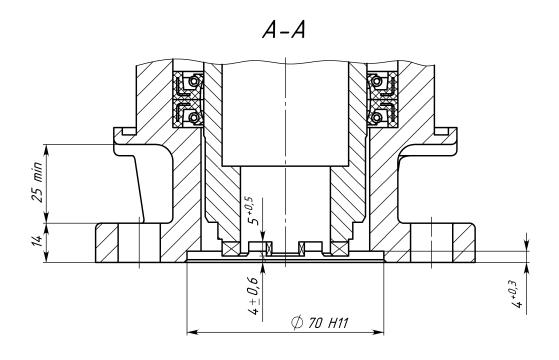



Рисунок $\Gamma.2$ — Присоединение типа AЧ под квадрат

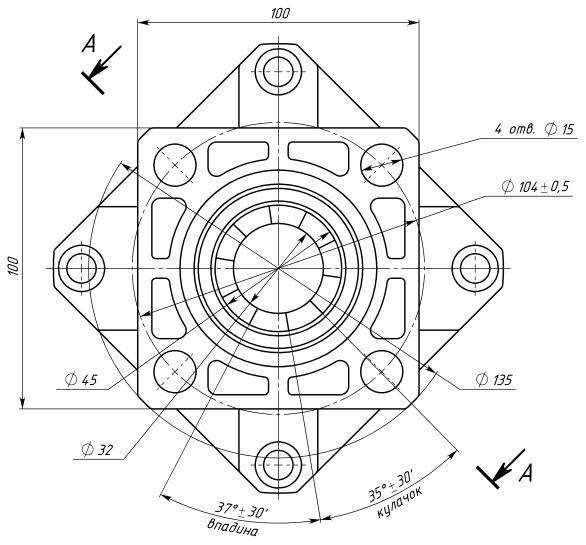


Рисунок $\Gamma.3$ — Присоединение типа AK под кулачки

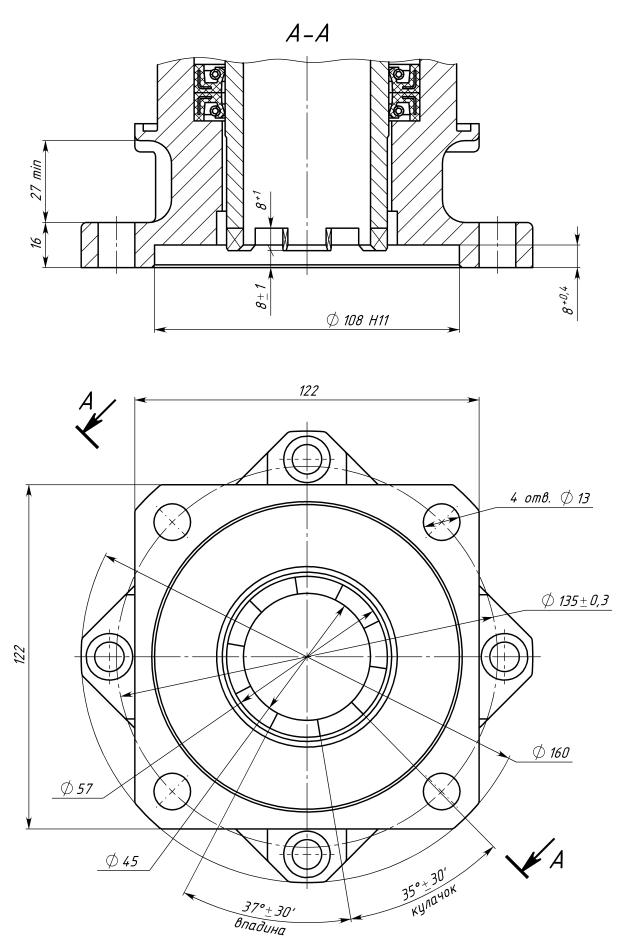


Рисунок $\Gamma.4$ — Присоединение типа δ

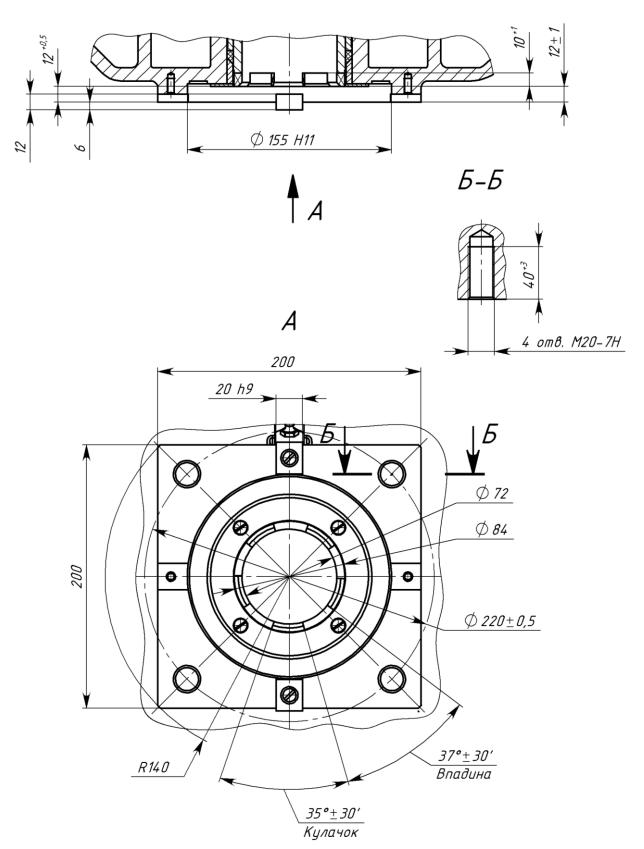


Рисунок $\Gamma.5$ — Присоединение типа В

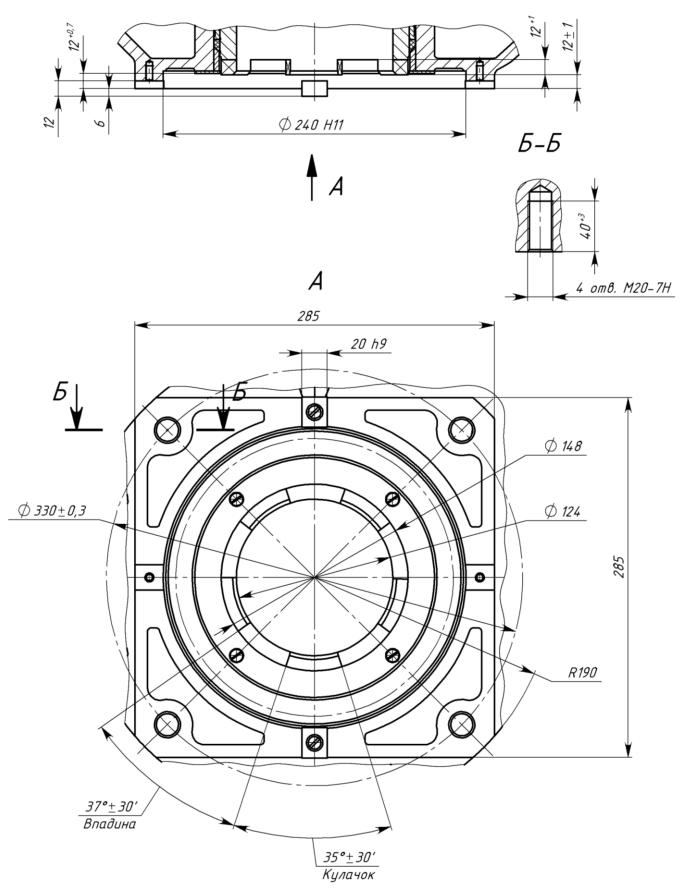


Рисунок $\Gamma.6$ – Присоединение типа Γ для конструктивной схемы 410

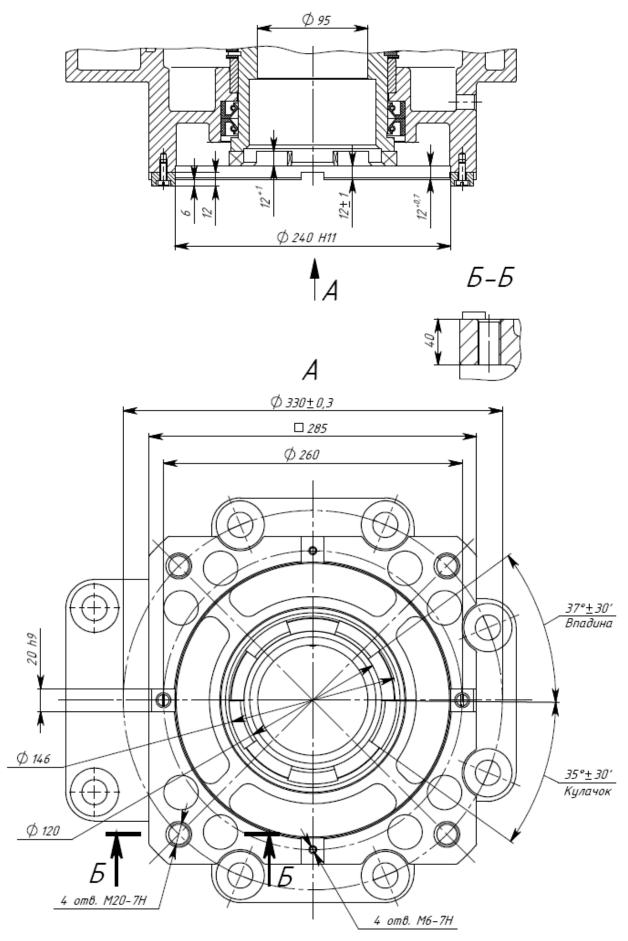


Рисунок $\Gamma.7$ — Присоединение типа Γ для конструктивной схемы 43



Рисунок $\Gamma.8$ — Присоединение типа Д для конструктивной схемы 43

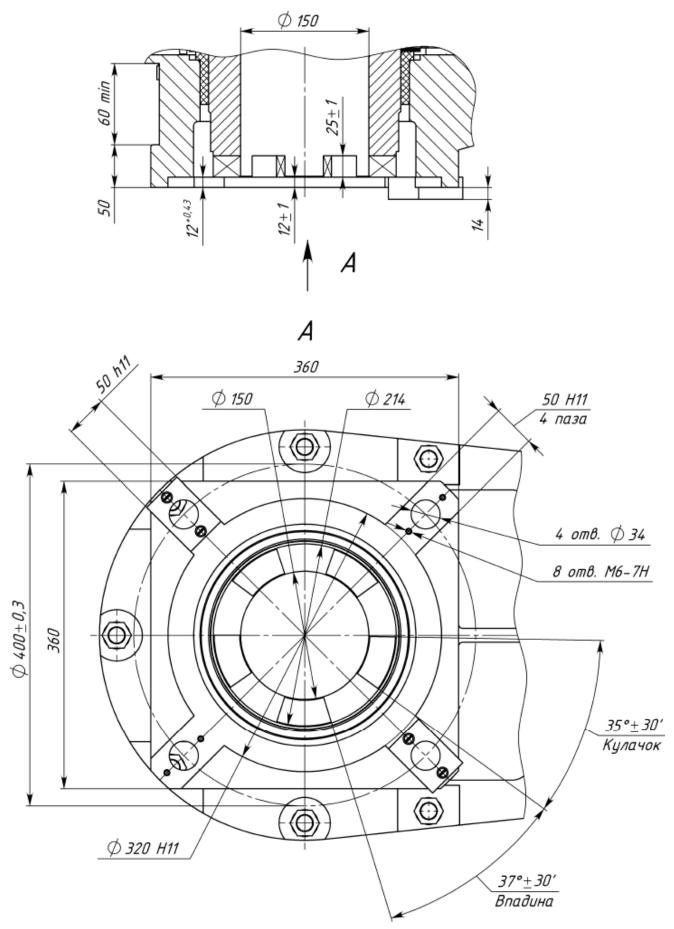


Рисунок Г.9 – Присоединение типа Д для конструктивной схемы 430

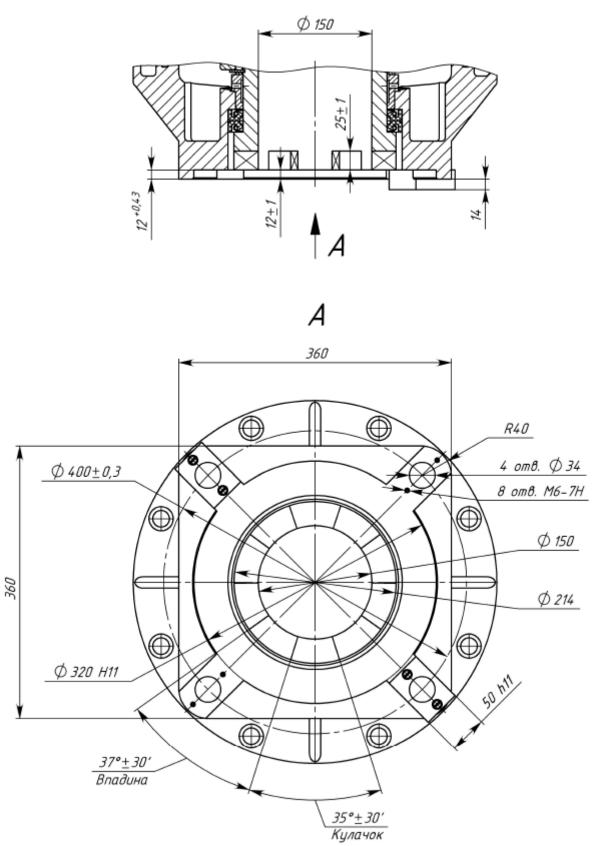


Рисунок Г.10– Присоединение типа Д для конструктивной схемы 44

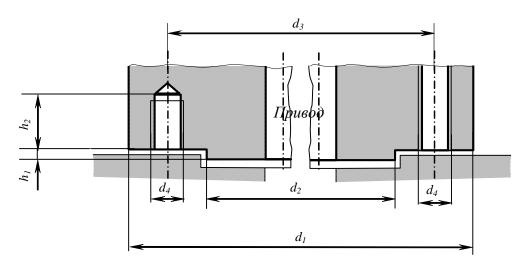


Рисунок Г.11 — Размеры фланцев из ряда F07...F40 по ГОСТ Р 55510-2013

Таблица $\Gamma.1$ – Размеры фланцев из ряда F07...F40 по Γ OCT P 55510-2013 (в миллиметрах)

			(merpan)			
Тип фланца	d ₁	d_2	d_3	d_4	h ₁ max	$ m h_2$ min	Число крепежных шпилек или болтов
F07	90	55	70	M8	3	12	4
F10	125	70	102	M10	3	15	4
F14	175	100	140	M16	4	24	4
F16	210	130	165	M20	5	30	4
F25	300	200	254	M16	5	24	8
F30	350	230	298	M20	5	30	8
F35	415	260	356	M30	5	45	8
F40	475	300	406	M36	8	54	8

Приложение Д Тип применяемых электродвигателей (справочное)

Таблица Д.1 – Тип применяемых электродвигателей.

Привод	Конструк- тивная схема	Двигатель ¹⁾ , основной вариант	Двигатель ¹⁾ , вариант 1	Двигатель ¹⁾ , вариант 2	Двигатель ¹⁾ , вариант 3	Двигатель ¹⁾ , вариант 4	Ток максим. момента привода ²⁾ , А
1	2	3	4	5	6	7	8
ЭП4 Х ₁ Х ₂ -Х ₃ -15-4				AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -15-5,6				AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -15-8				AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -15-11				AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -15-16			АИРБС 56АА4К	AB-052-4M			0,5
ЭП4 Х ₁ Х ₂ -Х ₃ -15-22		АИРТС 50А4	АИРБС 56А4К	AB-052-4M			0,5
ЭП4 Х ₁ Х ₂ -Х ₃ -15-32	40	АИРТС 50А2 АИРТС 50В2	АИРБС 56А2К	AB-052-2M			0,9
ЭП4 Х ₁ Х ₂ -Х ₃ -15-45		АИРТС 56В4	АИРБС 56В4			АДМЧС 56В4	1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -15-63		АИРТС 56В2	АИРБС 56В2			АДМЧС 56В2	1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -15-90		АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -15-125		АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	1,2
ЭП4 X_1X_2 - X_3 -15-180		АИРТС 63В2	АИРБС 71В2К			АДМЧС 63В2	1,3
ЭП4 Х ₁ Х ₂ -Х ₃ -30-4				AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -30-5,6	1			AB-042-4MA1	ДАТ75-25-1,5		0,4
ЭП4 Х ₁ Х ₂ -Х ₃ -30-8	1		АИРБС 56АА4К	AB-052-4M			0,5
ЭП4 Х ₁ Х ₂ -Х ₃ -30-11		АИРТС 50А4	АИРБС 56А4К	AB-052-4M			0,5
ЭП4 Х ₁ Х ₂ -Х ₃ -30-16		АИРТС 50A2 АИРТС 50B2	АИРБС 56А2К	AB-052-2M			0,5
ЭП4 Х ₁ Х ₂ -Х ₃ -30-22	40	АИРТС 56А4	АИРБС 56А4			АДМЧС 56А4	0,6
ЭП4 Х ₁ Х ₂ -Х ₃ -30-32		АИРТС 56В4	АИРБС 56В4			АДМЧС 56В4	1,1
ЭП4 Х ₁ Х ₂ -Х ₃ -30-45	1	АИРТС 56А2	АИРБС 56А2			АДМЧС 56А2	1,2
ЭП4 Х ₁ Х ₂ -Х ₃ -30-63		АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	1,2
ЭП4 Х ₁ Х ₂ -Х ₃ -30-90	1	АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	2,6
ЭП4 Х ₁ Х ₂ -Х ₃ -30-125		АИРТС 63В2	АИРБС 71В2К			АДМЧС 63В2	2,6
ЭП4 X_1X_2 - X_3 -30-180	1	АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	2,7

1	2	3	4	5	6	7	8
ЭП4 Х ₁ Х ₂ -Х ₃ -60-4			АИРБС 56АА4К	AB-052-4M			0.8
ЭП4 Х ₁ Х ₂ -Х ₃ -60-5,6		АИРТС 50А4	АИРБС 56А4К	AB-052-4M			0,8
ЭП4 Х ₁ Х ₂ -Х ₃ -60-8		АИРТС 50A2 АИРТС 50B2	АИРБС 56А2К	AB-052-2M			0,6
ЭП4 Х ₁ Х ₂ -Х ₃ -60-11		АИРТС 50A2 АИРТС 50B2	АИРБС 56А2К	AB-052-2M			0,6
ЭП4 X_1X_2 - X_3 -60-16	40	АИРТС 56А4	АИРБС 56А4			АДМЧС 56А4	1,0
ЭП4 X_1X_2 - X_3 -60-22	40	АИРТС 56А2	АИРБС 56А2			АДМЧС 56А2	1,0
ЭП4 X_1X_2 - X_3 -60-32		АИРТС 63А4	АИРБС 71А4К			АДМЧС 63А4	2,1
ЭП4 X_1X_2 - X_3 -60-45		АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	2,8
ЭП4 X_1X_2 - X_3 -60-63		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	2,6
ЭП4 X_1X_2 - X_3 -60-90		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	2,6
ЭП4 Х ₁ Х ₂ -Х ₃ -60-125		АИРТС 71В2	АИРБС 71В2			АДМЧС 71В2	3,0
ЭП4 Х ₁ Х ₂ -Х ₃ -60-180		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	3,2
ЭП4 Х ₁ Х ₂ -Х ₃ -120-4		АИРТС 50А4	АИРБС 56А4К				1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -120-5,6		АИРТС 50В4	АИРБС 56В4К				1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -120-8		АИРТС 56А4	АИРБС 56А4			АДМЧС 56А4	1,1
ЭП4 Х ₁ Х ₂ -Х ₃ -120-11		АИРТС 56А2	АИРБС 56А2			АДМЧС 56А2	1,2
ЭП4 Х ₁ Х ₂ -Х ₃ -120-16		АИРТС 63А4	АИРБС 71А4К			АДМЧС 63А4	1,7
ЭП4 Х ₁ Х ₂ -Х ₃ -120-22	40	АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	2,6
ЭП4 Х ₁ Х ₂ -Х ₃ -120-32		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	3,0
ЭП4 X_1X_2 - X_3 -120-45		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	3,2
ЭП4 Х ₁ Х ₂ -Х ₃ -120-63		АИРТС 71В2	АИРБС 71В2			АДМЧС 71В2	5,0
ЭП4 X_1X_2 - X_3 -120-90		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	5,8
ЭП4 X_1X_2 - X_3 -120-125		АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	5,5
ЭП4 X_1X_2 - X_3 -120-180		АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	6,7
ЭП4 X_1X_2 - X_3 -60-4			АИРБС 56АА4К				1,0
ЭП4 X_1X_2 - X_3 -60-5,6		АИРТС 50А4	АИРБС 56А4К				1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -60-8		АИРТС 50В4	АИРБС 56В4К				1,0
ЭП4 X_1X_2 - X_3 -60-11		АИРТС 50В4	АИРБС 56В4К				1,0
ЭП4 X_1X_2 - X_3 -60-16		АИРТС 56А2	АИРБС 56А2			АДМЧС 56А2	0,9
ЭП4 X_1X_2 - X_3 -60-22	41	АИРТС 56В2	АИРБС 56В2			АДМЧС 56В2	1,0
ЭП4 Х ₁ Х ₂ -Х ₃ -60-32	41	АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	2,1
ЭП4 Х ₁ Х ₂ -Х ₃ -60-45		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	2,8
ЭП4 Х ₁ Х ₂ -Х ₃ -60-63]	АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	2,6
ЭП4 Х ₁ Х ₂ -Х ₃ -60-90		АИРТС 71В2	АИРБС 71В2			АДМЧС 71В2	2,6
ЭП4 Х ₁ Х ₂ -Х ₃ -60-125]	АИРТС 71В2	АИРБС 71В2			АДМЧС 71В2	5,3
ЭП4 Х ₁ Х ₂ -Х ₃ -60-180		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	5,3
ЭП4 Х ₁ Х ₂ -Х ₃ - 90-180	41	АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	6,7

11

Продолжение таблицы Д.1												
1	2	3	4	5	6	7	8					
ЭП4 Х ₁ Х ₂ -Х ₃ -120-4		АИРТС 50В4	АИРБС 56В4К			АДМЧС 63А4	1,5					
ЭП4 Х ₁ Х ₂ -Х ₃ -120-5,6		АИРТС 50В4 АИРТС 56А4	АИРБС 56А4				1,5					
ЭП4 X_1X_2 - X_3 -120-8		АИРТС 56В4	АИРБС 56В4			АДМЧС 56В4	1,1					
ЭП4 X_1X_2 - X_3 -120-11		АИРТС 56В4	АИРБС 56В4			АДМЧС 56В4	1,2					
ЭП4 X_1X_2 - X_3 -120-16		АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	1,7					
ЭП4 X_1X_2 - X_3 -120-22	41	АИРТС 63А2	АИРБС 71А2К			АДМЧС 63А2	1,9					
ЭП4 X_1X_2 - X_3 -120-32		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	3,0					
ЭП4 X_1X_2 - X_3 -120-45		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	3,2					
ЭП4 X_1X_2 - X_3 -120-63		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	5,3					
ЭП4 X_1X_2 - X_3 -120-90		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	5,8					
ЭП4 X_1X_2 - X_3 -120-125		АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	5,8					
ЭП4 X_1X_2 - X_3 -120-180		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	10,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -250-4		АИРТС 56В4	АИРБС 56В4			АДМЧС 63А4	2,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -250-5,6		АИРТС 63А4	АИРБС 71А4К			АДМЧС 63А4	2,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -250-8		АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	1,7					
ЭП4 X_1X_2 - X_3 -250-11		АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	1,8					
ЭП4 X_1X_2 - X_3 -250-16		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	3,5					
ЭП4 Х ₁ Х ₂ -Х ₃ -250-22	41	АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	3,8					
ЭП4 X_1X_2 - X_3 -250-32	41	АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	5,4					
ЭП4 X_1X_2 - X_3 -250-45		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	5,9					
ЭП4 X_1X_2 - X_3 -250-63		AИPTC 90L2	AИPБC 90L2			АДМЧС 90L2	10,0					
ЭП4 X_1X_2 - X_3 -250-90		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	11,0					
ЭП4 X_1X_2 - X_3 -250-125		AИPTC 100S2	АИРБС 100S2			АДМЧС 100S2	14,0					
ЭП4 X_1X_2 - X_3 -250-180		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	14,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -400-180	41	АИРТС 100L2	АИРБС 100L2			АДМЧС 100L2	22,0					
ЭП4 X_1X_2 - X_3 -500-4		АИРТС 80В8	АИРБС 80В8			АДМЧС 80В8	3,5					
ЭП4 X_1X_2 - X_3 -500-5,6		АИРТС 63В4	АИРБС 71В4К				3,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-8		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	3,6					
ЭП4 X_1X_2 - X_3 -500-11		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	3,9					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-16		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	6,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-22	41	АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	7,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-32		АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	10,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-45		АИРТС 100S4	АИРБС 100S4			АДМЧС 100S4	11,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-63		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	14,0					
ЭП4 X_1X_2 - X_3 -500-90		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	17,0					
ЭП4 Х ₁ Х ₂ -Х ₃ -500-125		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	17,0					

1	2	3	4	5	6	7	8
ЭП4 Х ₁ Х ₂ -Х ₃ -630-1,5		АИРТС 63А4	АИРБС 71А4К			АДМЧС 63А4	5,0
ЭП4 Х ₁ Х ₂ -Х ₃ -630-4		АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	5,0
ЭП4 Х ₁ Х ₂ -Х ₃ -630-5,6		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	5,0
ЭП4 Х ₁ Х ₂ -Х ₃ -630-8		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	5,0
ЭП4 X_1X_2 - X_3 -630-11		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	6,5
ЭП4 X_1X_2 - X_3 -630-16	410	АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	10,0
ЭП4 X_1X_2 - X_3 -630-22		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	11,0
ЭП4 X_1X_2 - X_3 -630-32		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	14,0
ЭП4 X_1X_2 - X_3 -630-45		AИPTC 100S2	АИРБС 100S2			АДМЧС 100S2	16,0
ЭП4 X_1X_2 - X_3 -630-63		AИPTC 100S2	АИРБС 100S2			АДМЧС 100S2	26,0
ЭП4 X_1X_2 - X_3 -630-90		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	28,0
ЭП4 Х ₁ Х ₂ -Х ₃ -1000-1,5		АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	4,8
ЭП4 X_1X_2 - X_3 -1000-4		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	4,8
ЭП4 X_1X_2 - X_3 -1000-5,6		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	5,0
ЭП4 X_1X_2 - X_3 -1000-8		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	6,5
ЭП4 X_1X_2 - X_3 -1000-11	410	АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	7,4
ЭП4 X_1X_2 - X_3 -1000-16	410	AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	11,0
ЭП4 X_1X_2 - X_3 -1000-22		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	12,0
ЭП4 X_1X_2 - X_3 -1000-32		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	19,0
ЭП4 X_1X_2 - X_3 -1000-45		AИPTC 100S2	АИРБС 100S2			АДМЧС 100S2	22,0
ЭП4 X_1X_2 - X_3 -1000-63		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	30,0
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-1,5		АИРТС 63В4	АИРБС 71В4К			АДМЧС 63В4	8,0
ЭП4 X_1X_2 - X_3 -1500-4		АИРТС 71А2	АИРБС 71А2			АДМЧС 71А2	8,0
ЭП4 Х ₁ Х ₂ -Х ₃ -1500-5,6		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	9,0
ЭП4 X_1X_2 - X_3 -1500-8		АИРТС 80В4	АИРБС 80В4			АДМЧС 80В4	8,0
ЭП4 X_1X_2 - X_3 -1500-11	410	AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	9,0
ЭП4 X_1X_2 - X_3 -1500-16		AИPTC 90L2	АИРБС 90L2			АДМЧС 90L2	10,0
ЭП4 X_1X_2 - X_3 -1500-22		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	14,0
ЭП4 X_1X_2 - X_3 -1500-32		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	33,0
ЭП4 X_1X_2 - X_3 -1500-45		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	40,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-2		АИРТС 71В4	АИРБС 71В4			АДМЧС 71В4	9,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-4		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	9,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-5,6		АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	10,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-8	410	АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	11,0
ЭП4 X_1X_2 - X_3 -2000-11	410	АИРТС 100S4	АИРБС 100S4			АДМЧС 100S4	12,0
ЭП4 X_1X_2 - X_3 -2000-16		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	16,0
ЭП4 X_1X_2 - X_3 -2000-22		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	20,0
ЭП4 X_1X_2 - X_3 -2000-32		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	40,0

1	2	3	4	5	6	7	8
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-1,5		АИРТС 71В4	АИРБС 71В4	_		АДМЧС 71В4	9,0
$9\Pi 4 X_1 X_2 - X_3 - 3000 - 4 - \dots$	_	АИРТС 80А2	АИРБС 80А2			АДМЧС 80А2	10,0
$9\Pi 4 X_1 X_2 - X_3 - 3000 - 5,6$		АИРТС 80В2	АИРБС 80В2			АДМЧС 80В2	11,0
$9\Pi 4 X_1 X_2 - X_3 - 3000 - 8 - \dots$	410	АИРТС 100S4	АИРБС 100S4			АДМЧС 100S4	12,0
$9\Pi 4 X_1 X_2 - X_3 - 3000 - 11 - \dots$		АИРТС 100S2	АИРБС 100S2			АДМЧС 100S2	16,0
ЭП4 X_1X_2 - X_3 -3000-16		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	20,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-45		АИРТС 132S4	АИРБС 132S4				48,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-63	42		АИРБС 132LA2K				60,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-90	43		АИРБС 132LA2K				67,0
ЭП4 Х ₁ Х ₂ -Х ₃ -2000-125		АИРТС 132LA2	АИРБС 132LA2				77,0
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-22		АИРТС 132S4	АИРБС 132S4			АДМЧС 132S4	25,0
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-32		АИРТС 132S4	АИРБС 132S4				50,0
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-45	43	АИРТС 132М4	АИРБС 132М4				58,0
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-63			АИРБС 132LA2K				75,0
ЭП4 Х ₁ Х ₂ -Х ₃ -3000-90		АИРТС 132LB2	АИРБС 132LB2				87,0
ЭП4 X_1X_2 - X_3 -4000-4		AИPTC 100L6	АИРБС 100L6			АДМЧС 100L6	15,0
ЭП4 X_1X_2 - X_3 -4000-5,6		АИРТС 100S4	АИРБС 100S4			АДМЧС 100S4	16,0
ЭП4 X_1X_2 - X_3 -4000-8		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	18,0
ЭП4 X_1X_2 - X_3 -4000-11		AИPTC 100L2	АИРБС 100L2			АДМЧС 100L2	23,0
ЭП4 X_1X_2 - X_3 -4000-16	43	АИРТС 132М6	АИРБС 132М6			АДМЧС 132М6	28,0
ЭП4 X_1X_2 - X_3 -4000-22		АИРТС 132М4	АИРБС 132М4			АДМЧС 132М4	30,0
ЭП4 X_1X_2 - X_3 -4000-32		АИРТС 132М4	АИРБС 132М4				58,0
ЭП4 X_1X_2 - X_3 -4000-45		AИPTC 132LA4	АИРБС 132LA4				67,0
ЭП4 X_1X_2 - X_3 -4000-63		АИРТС 132LB2	AИPБC 132LB2				90,0
ЭП4 X_1X_2 - X_3 -6000-4		АИРТС 112МВ6	АИРБС 112МВ6			АДМЧС 112МВ6	22,0
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-5,6		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	25,0
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-8		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	33,0
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-11	43	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	38,0
ЭП4 X_1X_2 - X_3 -6000-16	15	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	44,0
ЭП4 X_1X_2 - X_3 -6000-22		AИPTC 132LA4	АИРБС 132LA4				50,0
ЭП4 Х ₁ Х ₂ -Х ₃ -6000-32		АИРТС 132LA4	АИРБС 132LA4				90,0
ЭП4 X_1X_2 - X_3 -6000-40		AИPTC 132LB2	AИPБC 132LB2				100,0

1	2	3	4	5	6	7	8
ЭП4 X_1X_2 - X_3 -8000-4		АИРТС 112МВ6	АИРБС 112МВ6			АДМЧС 112МВ6	30,0
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-5,6		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	35,0
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-8	1	АИРТС 132S4	АИРБС 132S4			АДМЧС 132S4	48,0
ЭП4 X_1X_2 - X_3 -8000-11	43	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	55,0
ЭП4 X_1X_2 - X_3 -8000-16			АИРБС 132LA2K				60,0
ЭП4 X_1X_2 - X_3 -8000-22		AИPTC 132LA4	АИРБС 132LA4				70,0
ЭП4 X_1X_2 - X_3 -8000-32		AИPTC 132LB2	АИРБС 132LB2				70,0
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-22	430	АИРТС 132LA2	АИРБС 132LA2				70,0
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2		АИРТС 112МВ6	АИРБС 112МВ6			АДМЧС 112МВ6	30,0
ЭП4 Х ₁ Х ₂ -Х ₃ -12000-2,8		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	35,0
ЭП4 X_1X_2 - X_3 -12000-4		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	42,0
ЭП4 X_1X_2 - X_3 -12000-5,6	430	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	44,0
ЭП4 X_1X_2 - X_3 -12000-8	430	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	55,0
ЭП4 X_1X_2 - X_3 -12000-11		AИPTC 132LA4	АИРБС 132LA4				65,0
ЭП4 X_1X_2 - X_3 -12000-16		АИРТС 132LA4	АИРБС 132LA4				95,0
ЭП4 X_1X_2 - X_3 -12000-22		AИPTC 132LB2	АИРБС 132LB2				95,0
ЭП4 X_1X_2 - X_3 -16000-2		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	50,0
ЭП4 X_1X_2 - X_3 -16000-4		АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	55,0
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-5,6	430	АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	58,0
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-8	430	АИРТС 132LA4	АИРБС 132LA4				70,0
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-11		АИРТС 132LA4	АИРБС 132LA4				87,0
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-16		АИРТС 132LB2	АИРБС 132LB2				87,0
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-2		АИРТС 112М4	АИРБС 112М4			АДМЧС 112М4	50,0
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-4		АИРТС 132М2	АИРБС 132М2			АДМЧС 132М2	55,0
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-5,6	430	АИРТС 132LA4	АИРБС 132LA4				58,0
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-8		АИРТС 132LA4	АИРБС 132LA4				70,0
ЭП4 Х ₁ Х ₂ -Х ₃ -20000-11		АИРТС 132LB2	АИРБС 132LB2				87,0
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-2		АИРТС 132S4	АИРБС 132S4			АДМЧС 132S4	65,0
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-4	430		АИРБС 132LA2K				70,0
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-5,6	430	АИРТС 132LA4	АИРБС 132LA4				110,0
ЭП4 Х ₁ Х ₂ -Х ₃ -24000-8		АИРТС 132LB2	АИРБС 132LB2				120,0
ЭП4 Х ₁ Х ₂ -Х ₃ -8000-45	44	АИРТС 180М2	АИРБС 180М2				120,0
ЭП4 Х ₁ Х ₂ -Х ₃ -16000-22	44		АИРБС 180М4		-		170,0

Примечания

¹ В приводах применяются трехфазные асинхронные электродвигатели с короткозамкнутым ротором. 2 Во всех режимах работы привода с установившейся частотой вращения выходного вала n₁ ток, потребляемый приводом, не превышает ток максимального момента привода.

Таблица Д.2 — Параметры электродвигателей приводов ЭП4

Типоразмер лвигателя вательный выпустаний выпу						
АИРБС 56A2 0,18 2805 0,63 2,5 0,73 АИРБС 56A2K 0.09 2850 0,33 1,3 0,70 АИРБС 56A4 0,12 1425 0,55 2,2 0,60 АИРБС 56A4K 0,06 1425 0,33 1,3 0,55 АИРБС 56B2 0,25 2850 0,86 3,4 0,74 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4K 0,18 1380 0,94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 2,60 14,3 0,85 АИРБС 71A2K 0,37 233 0,73 2,8 0,80 <	Типоразмер двигателя	Номинальная мощность, кВт	Частота вращения номинальная, об/мин	Ток номинальный, А	Ток пусковой, А	Коэффициент мощности, соѕф
АИРБС 56A2 0,18 2805 0,63 2,5 0,73 АИРБС 56A2K 0.09 2850 0,33 1,3 0,70 АИРБС 56A4 0,12 1425 0,55 2,2 0,60 АИРБС 56A4K 0,06 1425 0,33 1,3 0,55 АИРБС 56B2 0,25 2850 0,86 3,4 0,74 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4K 0,18 1380 0,94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 2,60 14,3 0,85 АИРБС 71A2K 0,37 233 0,73 2,8 0,80 <	1	2	3	4	5	6
АИРБС 56А2К 0,09 2850 0,33 1,3 0,70 АИРБС 56А4 0,12 1425 0,55 2,2 0,60 АИРБС 56А4К 0,06 1425 0,33 1,3 0,55 АИРБС 56В2 0,045 1425 0,25 1,0 0,55 АИРБС 56В2 0,25 2850 0,86 3,4 0,74 АИРБС 56В2 0,12 2805 0,44 1,8 0,70 АИРБС 56В4 0,18 1380 0,94 3,8 0,60 АИРБС 56В4 0,12 2805 0,44 1,8 0,70 AИРБС 56В4 0,09 1425 0,5 2,0 0,55 AИРБС 71В2 1,00 2760 2,60 14,3 0,85						
АИРБС 56A4 0,12 1425 0,55 2,2 0,60 АИРБС 56A4K 0,06 1425 0,33 1,3 0,55 АИРБС 56BA 0,045 1425 0,25 1,0 0,55 АИРБС 56B2 0,25 2850 0,86 3,4 0,74 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4K 0,18 1380 0,94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 0,85 3,7 0,90 АИРБС 71B2K 0,37 2706 0,85 3,7 0,90 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4K 0,37 1313 1,04 4,0 0,81 <		,				
АИРБС 56А4К 0,06 1425 0,33 1,3 0,55 АИРБС 56ВА4К 0,045 1425 0,25 1,0 0,55 АИРБС 56В2 0,25 2850 0,86 3,4 0,74 АИРБС 56В2К 0,12 2805 0,44 1,8 0,70 АИРБС 56В4 0,18 1380 0,94 3,8 0,60 АИРБС 56В4К 0,09 1425 0,5 2,0 0,55 АИРБС 71А2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 0,60 14,3 0,85 АИРБС 71A4K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4K 0,80 1373 2,30 11,5 0,75 АИРБС 8082 1,50 2862 3,60 20,5 0,84						,
АИРБС 56AA4K 0,045 1425 0,25 1,0 0,55 АИРБС 56B2 0,25 2850 0,86 3,4 0,74 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4 0,18 1380 0.94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 0,85 3,7 0,90 АИРБС 71B4K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2K 1,20 2769 3,00 16,5 0,83 АИРБС 71B4K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4K 0,80 1373 2,30 11,5 0,75 АИРБС 71B4K 0,37 1313 1,04 4,0 0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,		,		,		· ·
АИРБС 56B2 0,25 2850 0,86 3,4 0,74 АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4 0,18 1380 0,94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2K 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 0,85 3,7 0,90 АИРБС 71B4K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2 L 1,20 2769 3,00 16,5 0,83 АИРБС 71B4 C 0,55 2700 1,27 5,5 0,90 АИРБС 80B4 C 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 100L2				· ·		
АИРБС 56B2K 0,12 2805 0,44 1,8 0,70 АИРБС 56B4 0,18 1380 0,94 3,8 0,60 АИРБС 56B4K 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2K 0,37 2706 0,85 3,7 0,90 АИРБС 71A4K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2 1,20 2769 3,00 16,5 0,83 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4 0,80 1373 2,30 11,5 0,75 АИРБС 71B4K 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B4 1,70 1347 4,40 22,0 0,78						· ·
АИРБС 56В4 0,18 1380 0,94 3,8 0,60 АИРБС 56В4К 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2К 0,37 2706 0,85 3,7 0,90 АИРБС 71A4К 0,25 1323 0,73 2,8 0,80 АИРБС 71B2 1,20 2769 3,00 16,5 0,83 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4K 0,80 1373 2,30 11,5 0,75 АИРБС 71B4K 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 <						
АИРБС 56В4К 0,09 1425 0,5 2,0 0,55 АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2К 0,37 2706 0,85 3,7 0,90 АИРБС 71B4K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2K 0,25 1323 0,73 2,8 0,80 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4K 0,80 1373 2,30 11,5 0,75 АИРБС 80B4 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС 100L6 2,60 908 6,80 40,8 0,76		, and the second				
АИРБС 71A2 1,00 2760 2,60 14,3 0,85 АИРБС 71A2К 0,37 2706 0,85 3,7 0,90 АИРБС 71A4К 0,25 1323 0,73 2,8 0,80 АИРБС 71B2 1,20 2769 3,00 16,5 0,83 АИРБС 71B2K 0,55 2700 1,27 5,5 0,90 АИРБС 71B4 0,80 1373 2,30 11,5 0,75 АИРБС 71B4K 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 100L2 3,50 2790 7,70 50,1 0,86 АИРБС100L8 1,60 675 5,60 30,8 0,64		,				
АИРБС 71А2К 0,37 2706 0,85 3,7 0,90 АИРБС 71А4К 0,25 1323 0,73 2,8 0,80 АИРБС 71В2 1,20 2769 3,00 16,5 0,83 АИРБС 71В2К 0,55 2700 1,27 5,5 0,90 АИРБС 71В4 0,80 1373 2,30 11,5 0,75 АИРБС 71В4К 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 100L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L8 1,60 675 5,60 30,8 0,64						· ·
АИРБС 71А4К 0,25 1323 0,73 2,8 0,80 АИРБС 71В2 1,20 2769 3,00 16,5 0,83 АИРБС 71В2К 0,55 2700 1,27 5,5 0,90 АИРБС 71В4 0,80 1373 2,30 11,5 0,75 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86					· ·	·
АИРБС 71В2 1,20 2769 3,00 16,5 0,83 АИРБС 71В2К 0,55 2700 1,27 5,5 0,90 АИРБС 71В4 0,80 1373 2,30 11,5 0,75 АИРБС 80B4 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88						· ·
АИРБС 71В2К 0,55 2700 1,27 5,5 0,90 АИРБС 71В4 0,80 1373 2,30 11,5 0,75 АИРБС 71В4К 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86				· · · · · · · · · · · · · · · · · · ·	·	· ·
АИРБС 71В4 0,80 1373 2,30 11,5 0,75 АИРБС 71В4К 0,37 1313 1,04 4,0 0,81 АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86						
АИРБС 71В4К 0,37 1313 1,04 4,0 0,81 АИРБС 80А2 1,50 2862 3,60 20,5 0,84 АИРБС 80В2 2,40 2796 5,80 37,7 0,85 АИРБС 80В4 1,70 1347 4,40 22,0 0,78 АИРБС 80В8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС10W4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112MA6 3,00 920 7,00 42,0 0,76						
АИРБС 80A2 1,50 2862 3,60 20,5 0,84 АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС13LAZK 11,00 2814 20,70 134,6 0,95 </td <td></td> <td>, and the second second</td> <td></td> <td></td> <td></td> <td></td>		, and the second				
АИРБС 80B2 2,40 2796 5,80 37,7 0,85 АИРБС 80B4 1,70 1347 4,40 22,0 0,78 АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС132LA2K 11,00 2814 20,70 134,6 0,95 <		,		,		
АИРБС 80В4 1,70 1347 4,40 22,0 0,78 АИРБС 80В8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС12MB6 4,00 920 10,00 60,0 0,81 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
АИРБС 80B8 0,60 675 2,30 6,9 0,64 АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС112MB6 4,00 920 10,00 60,0 0,81 АИРБС132LA2 15,00 2814 20,70 134,6 0,95 АИРБС132LA4 15,00 1415 33,00 214,5 0,82				· ·	· ·	·
АИРБС 90L2 3,50 2790 7,70 50,1 0,86 АИРБС 100L2 6,30 2805 14,00 105,0 0,86 АИРБС 100L6 2,60 908 6,80 40,8 0,76 АИРБС 100L8 1,60 675 5,60 30,8 0,64 АИРБС 100S2 4,80 2805 10,40 78,0 0,86 АИРБС 110S4 3,20 1388 7,90 47,4 0,80 АИРБС 112M2 7,50 2805 14,80 111,0 0,88 АИРБС 112M4 5,50 1380 11,40 79,8 0,86 АИРБС 112MA6 3,00 920 7,00 42,0 0,76 АИРБС 132LB6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132M4 11,00 2892 21,7 162,8						
АИРБС100L2 6,30 2805 14,00 105,0 0,86 АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС112MB6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132M4 11,00 2892 21,7 162,8					·	
АИРБС100L6 2,60 908 6,80 40,8 0,76 АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС132MB6 4,00 920 10,00 60,0 0,81 АИРБС132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LB4 20,00 1415 33,00 214,5 0,82 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M4 11,50 1422 24,20 169,4 <						
АИРБС100L8 1,60 675 5,60 30,8 0,64 АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС132MB6 4,00 920 10,00 60,0 0,81 АИРБС132LA2 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M4 11,00 2892 21,7 162,8 0,88 АИРБС132M6 8,50 955 20,00 120,0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
АИРБС100S2 4,80 2805 10,40 78,0 0,86 АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС112MB6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС 132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС 132M4 11,50 1422 24,20 169,4 0,78 АИРБС 132S4 8,50 955 20,00 120,0						
АИРБС100S4 3,20 1388 7,90 47,4 0,80 АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС112MB6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС132S4 8,50 1440 16,00 112,0						
АИРБС112M2 7,50 2805 14,80 111,0 0,88 АИРБС112M4 5,50 1380 11,40 79,8 0,86 АИРБС112MA6 3,00 920 7,00 42,0 0,76 АИРБС112MB6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>					·	
АИРБС112М45,50138011,4079,80,86АИРБС112МА63,009207,0042,00,76АИРБС112МВ64,0092010,0060,00,81АИРБС 132LA2К11,00281420,70134,60,95АИРБС132LA215,00285029,30205,10,89АИРБС 132LA415,00141533,00214,50,82АИРБС 132LB220,00279037,5243,80,94АИРБС 132LB420,00138839,50225,20,89АИРБС 132M211,00289221,7162,80,88АИРБС132M411,50142224,20169,40,78АИРБС132M68,5095520,00120,00,77АИРБС 132S48,50144016,00112,00,82АИРБС180M230,00292555,7389,90,89	* *					,
АИРБС112МА6 3,00 920 7,00 42,0 0,76 АИРБС112МВ6 4,00 920 10,00 60,0 0,81 АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89						,
АИРБС112MB64,0092010,0060,00,81АИРБС 132LA2K11,00281420,70134,60,95АИРБС132LA215,00285029,30205,10,89АИРБС132LA415,00141533,00214,50,82АИРБС 132LB220,00279037,5243,80,94АИРБС 132LB420,00138839,50225,20,89АИРБС 132M211,00289221,7162,80,88АИРБС132M411,50142224,20169,40,78АИРБС132M68,5095520,00120,00,77АИРБС 132S48,50144016,00112,00,82АИРБС180M230,00292555,7389,90,89					· · · · · · · · · · · · · · · · · · ·	,
АИРБС 132LA2K 11,00 2814 20,70 134,6 0,95 АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89		·			·	,
АИРБС132LA2 15,00 2850 29,30 205,1 0,89 АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89		·		,	·	· · · · · · · · · · · · · · · · · · ·
АИРБС132LA4 15,00 1415 33,00 214,5 0,82 АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89		· ·			,	· ·
АИРБС 132LB2 20,00 2790 37,5 243,8 0,94 АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89		, , , , , , , , , , , , , , , , , , ,				,
АИРБС 132LB4 20,00 1388 39,50 225,2 0,89 АИРБС 132M2 11,00 2892 21,7 162,8 0,88 АИРБС132M4 11,50 1422 24,20 169,4 0,78 АИРБС132M6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
АИРБС 132М2 11,00 2892 21,7 162,8 0,88 АИРБС132М4 11,50 1422 24,20 169,4 0,78 АИРБС132М6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180М2 30,00 2925 55,7 389,9 0,89		·			·	·
АИРБС132М4 11,50 1422 24,20 169,4 0,78 АИРБС132М6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180М2 30,00 2925 55,7 389,9 0,89		,			· ·	· ·
АИРБС132М6 8,50 955 20,00 120,0 0,77 АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89	АИРБС132М4	· · · · · · · · · · · · · · · · · · ·		,	· ·	
АИРБС 132S4 8,50 1440 16,00 112,0 0,82 АИРБС180M2 30,00 2925 55,7 389,9 0,89	АИРБС132М6	,		,		,
АИРБС180M2 30,00 2925 55,7 389,9 0,89	АИРБС 132S4	,	1440			· · · · · · · · · · · · · · · · · · ·
АИРБС180M4 30.00 1455 58.40 408.8 0.85	АИРБС180М2		2925		· ·	,
1100,0	АИРБС180М4	30,00	1455	58,40	408,8	0,85

Продолжение таолиц	, ' ' ' 	_			
1	2	3	4	5	6
ДАТ75-25-1,5	0,025	1300	0,15	0,38	0,50
AB-042-4MA1	0,025	1300	0,14	0,4	0,50
AB-052-2M	0,09	2800	0,26	1,3	0,50
AB-052-4M	0,06	1350	0,26	0,91	0,60
АИРТС50А2	0,09	2850	0,33	1,3	0,70
АИРТС50А4	0,06	1425	0,33	1,3	0,55
АИРТС50В2	0,12	2850	0,44	1,8	0,70
АИРТС50В4	0,09	1425	0,50	2,0	0,55
АИРТС 56А2	0,18	2850	0,63	2,5	0,73
АИРТС 56А4	0,12	1425	0,55	2,2	0,60
АИРТС 56В2	0,25	2850	0,86	3,4	0,74
АИРТС 56В4	0,18	1380	0,94	3,8	0,60
АИРТС 63А2	0,37	2706	0,85	3,7	0,90
АИРТС 63В2	0,55	2700	1,27	5,5	0,90
АИРТС 63А4	0,25	1323	0,73	2,8	0,80
АИРТС 63В4	0,37	1313	1,04	4,0	0,81
АИРТС 71А2	1,00	2760	2,60	14,3	0,85
АИРТС 71B2	1,20	2769	3,00	16,5	0,83
АИРТС 71В4	0,80	1373	2,30	11,5	0,75
AИРТС 80A2	1,50	2862	3,60	20,5	0,84
АИРТС 80B2	2,40	2796	5,80	37,7	0,85
AИРТС 80B4	1,70	1347	4,40	22,0	0,78
AИРТС 80B8	0,60	675	2,30	6,9	0,64
AИРТС 90L2	3,50	2790	7,70	50,1	0,86
АИРТС 100L2	6,30	2805	14,00	105,0	0,86
АИРТС 100L6	2,60	908	6,80	40,8	0,76
AUPTC 100L8	1,60	675	5,60	30,8	0,64
АИРТС 100S2	4,80	2805	10,40	78,0	0,86
АИРТС 100S4	3,20	1388	7,90	47,4	0,80
АИРТС 112M2	7,50	2805	14,80	111,0	0,88
АИРТС 112M2 АИРТС 112M4	5,50	1380	11,40	79,8	0,86
AИРТС 112MA6	3,00	920	7,00	42,0	0,76
AИРТС 112MA6	4,00	920	10,00	60,0	0,70
AИРТС 132LA2	15,00	2850	29,30	205,1	0,81
AИРТС 132LA4	15,00	1415	33,00	214,5	0,82
AИГТС 132LR4 AИРТС 132LB2	20,00	2790	37,50	243,8	0,82
AИГТС 132LB2 AИРТС 132LB4	20,00	1388	39,50	225,2	0,94
АИГТС 132LD4 АИРТС 132M2	11,00	2892	21,70	162,8	0,89
АИРТС 132M2 АИРТС 132M4	11,50	1422	24,20	169,4	0,88
АИРТС 132M4 АИРТС 132M6	8,50	955	20,00	120,0	0,78
АИРТС 132NI0 АИРТС 132S4	8,50	1440	16,00	112,0	0,77
АИРТС 132S4 АИРТС 180M2	30,00	2925	55,70	389,9	0,82
		+		·	, ,
АДМЧС 56А4	0,18	2460	0,63	2,3	0,74
АДМЧС 56А4	0,12	1230	0,55	2,0	0,68
АДМЧС 56B2	0,25	2430	0,86	3,1	0,77
АДМЧС 56В4	0,18	1230	0,94	3,4	0,68
АДМЧС 63А2	0,37	2652	0,85	4,7	0,91
АДМЧС 63В2	0,55	2652	1,27	7,0	0,88
АДМЧС 63А4	0,25	1341	0,73	3,7	0,67

1	2	3	4	5	6
АДМЧС 63В4	0,37	1341	1,04	5,2	0,73
АДМЧС 71А2	1,00	2700	2,60	14,3	0,88
АДМЧС 71В2	1,20	2772	3,00	16,5	0,83
АДМЧС 71В4	0,80	1350	2,30	11,5	0,75
АДМЧС 80А2	1,50	2841	3,60	23,4	0,80
АДМЧС 80В2	2,40	2799	5,80	37,7	0,86
АДМЧС 80В4	1,70	1380	4,40	22,0	0,82
АДМЧС 80В8	0,60	690	2,30	6,9	0,64
АДМЧС 90L2	3,50	2790	7,70	50,1	0,86
АДМЧС 100S2	4,80	2805	10,40	78,0	0,86
АДМЧС 100S4	3,20	1400	7,90	47,4	0,80
АДМЧС 100L2	6,30	2805	14,00	105,0	0,86
АДМЧС 100L6	2,60	935	6,80	40,8	0,76
АДМЧС 100L8	1,60	670	5,60	30,8	0,64
АДМЧС 112М2	8,00	2850	14,80	103,6	0,86
АДМЧС 112М4	5,50	1391	11,40	68,4	0,83
АДМЧС 112МА6	3,40	910	7,00	45,5	0,77
АДМЧС 112МВ6	4,20	915	10,00	65,0	0,79
АДМЧС 132М2	11,00	2841	21,70	162,8	0,89
АДМЧС 132М4	11,80	1410	24,20	169,4	0,85
АДМЧС 132М6	8,50	940	20,00	130,0	0,80
АДМЧС 132S4	8,50	1395	16,00	112,0	0,85

Примечание – данные по электродвигателям являются ориентировочными, возможны отклонения от указанных значений в пределах допусков изготовления.